A new proof of the Barwise extension theorem, and the universal finite sequence, Barcelona Set Theory Seminar, 28 October 2020

This will be a talk for the Barcelona Set Theory Seminar, 28 October 2020 4 pm CET (3 pm UK). Contact Joan Bagaria bagaria@ub.edu for the access link.

Abstract. The Barwise extension theorem, asserting that every countable model of ZF set theory admits an end-extension to a model of ZFC+V=L, is both a technical culmination of the pioneering methods of Barwise in admissible set theory and infinitary logic and also one of those rare mathematical theorems that is saturated with philosophical significance. In this talk, I shall describe a new proof of the theorem that omits any need for infinitary logic and relies instead only on classical methods of descriptive set theory. This proof leads directly to the universal finite sequence, a Sigma_1 definable finite sequence, which can be extended arbitrarily as desired in suitable end-extensions of the universe. The result has strong consequences for the nature of set-theoretic potentialism.  This work is joint with Kameryn J. Williams.

Article: The $\Sigma_1$-definable universal finite sequence

  • J. D. Hamkins and K. J. Williams, “The $\Sigma_1$-definable universal finite sequence,” ArXiv e-prints, 2019.
    [Bibtex]
    @ARTICLE{HamkinsWilliams:The-universal-finite-sequence,
    author = {Joel David Hamkins and Kameryn J. Williams},
    title = {The $\Sigma_1$-definable universal finite sequence},
    journal = {ArXiv e-prints},
    year = {2019},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {Under review},
    abstract = {},
    keywords = {under-review},
    eprint = {1909.09100},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    source = {},
    doi = {},
    }

Every countable model of set theory is isomorphic to a submodel of its own constructible universe, Barcelona, December, 2012

This will be a talk for a set theory workshop at the University of Barcelona on December 15, 2012, organized by Joan Bagaria.

Vestíbul Universitat de Barcelona

Abstract. Every countable model of set theory $M$, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding $j:M\to L^M$ that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random $\mathbb{Q}$-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that $L^M$ contains a submodel that is a universal acyclic digraph of rank $\text{Ord}^M$. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other.  Indeed, the bi-embeddability classes form a well-ordered chain of length $\omega_1+1$.  Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory $M$ is universal for all countable well-founded binary relations of rank at most $\text{Ord}^M$; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if $M$ is any nonstandard model of PA, then every countable model of set theory—in particular, every model of ZFC—is isomorphic to a submodel of the hereditarily finite sets $HF^M$ of $M$. Indeed, $HF^M$ is universal for all countable acyclic binary relations.

Article | Barcelona research group in set theory