George Leibman

George Joseph Leibman earned his Ph.D. under my supervision in June, 2004 at the CUNY Graduate Center. He was my first Ph.D. student. Being very interested both in forcing and in modal logic, it was natural for him to throw himself into the emerging developments at the common boundary of these topics.  He worked specifically on the natural extensions of the maximality principle where when one considers a fixed definable class $\Gamma$ of forcing notions.  This research engaged with fundamental questions about the connection between the forcing-theoretic properties of the forcing class $\Gamma$ and the modal logic of its forcing validities, and was a precursor of later work, including joint work, on the modal logic of forcing.

George Leibman

George Leibman

 

web page | math genealogy | MathSciNet | ar$\chi$iv | related posts

George Leibman, “Consistency Strengths of Modified Maximality Principles,” Ph.D. thesis, CUNY Graduate Center, 2004.  ar$\chi$iv

Abstract. The Maximality Principle MP is a scheme which states that if a sentence of the language of ZFC is true in some forcing extension $V^{\mathbb{P}}$, and remains true in any further forcing extension of $V^{\mathbb{P}}$, then it is true in all forcing extensions of $V$.  A modified maximality principle $\text{MP}_\Gamma$ arises when considering forcing with a particular class $\Gamma$ of forcing notions. A parametrized form of such a principle, $\text{MP}_\Gamma(X)$, considers formulas taking parameters; to avoid inconsistency such parameters must be restricted to a specific set $X$ which depends on the forcing class $\Gamma$ being considered. A stronger necessary form of such a principle, $\square\text{MP}_\Gamma(X)$, occurs when it continues to be true in all $\Gamma$ forcing extensions.

This study uses iterated forcing, modal logic, and other techniques to establish consistency strengths for various modified maximality principles restricted to various forcing classes, including ccc, COHEN, COLL (the forcing notions that collapse ordinals to $\omega$), ${\lt}\kappa$ directed closed forcing notions, etc., both with and without parameter sets. Necessary forms of these principles are also considered.

Structural connections between a forcing class and its modal logic

  • J. D. Hamkins, G. Leibman, and B. Löwe, “Structural connections between a forcing class and its modal logic,” Israel J. Math., vol. 207, iss. 2, pp. 617-651, 2015.  
    @article {HamkinsLeibmanLoewe2015:StructuralConnectionsForcingClassAndItsModalLogic,
    AUTHOR = {Hamkins, Joel David and Leibman, George and L{\"o}we,
    Benedikt},
    TITLE = {Structural connections between a forcing class and its modal
    logic},
    JOURNAL = {Israel J. Math.},
    FJOURNAL = {Israel Journal of Mathematics},
    VOLUME = {207},
    YEAR = {2015},
    NUMBER = {2},
    PAGES = {617--651},
    ISSN = {0021-2172},
    MRCLASS = {03E40 (03B45)},
    MRNUMBER = {3359713},
    DOI = {10.1007/s11856-015-1185-5},
    url = {http://jdh.hamkins.org/a-forcing-class-and-its-modal-logic},
    eprint = {1207.5841},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, interpreting $\square$ as “in all forcing extensions” and $\Diamond$ as “in some forcing extension”. In this modal language one may easily express sweeping general forcing principles, such as $\Diamond\square\varphi\to\square\Diamond\varphi$, the assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, or $\Diamond\square\varphi\to\varphi$, the assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC (see A simple maximality principle).

Every definable forcing class similarly gives rise to the corresponding forcing modalities, for which one considers extensions only by forcing notions in that class. In previous work, we proved that if ZFC is consistent, then the ZFC-provably valid principles of the class of all forcing are precisely the assertions of the modal theory S4.2 (see The modal logic of forcing). In this article, we prove that the provably valid principles of collapse forcing, Cohen forcing and other classes are in each case exactly S4.3; the provably valid principles of c.c.c. forcing, proper forcing, and others are each contained within S4.3 and do not contain S4.2; the provably valid principles of countably closed forcing, CH-preserving forcing and others are each exactly S4.2; and the provably valid principles of $\omega_1$-preserving forcing are contained within S4.tBA. All these results arise from general structural connections we have identified between a forcing class and the modal logic of forcing to which it gives rise, including the connection between various control statements, such as buttons, switches and ratchets, and their corresponding forcing validities. These structural connections therefore support a forcing-only analysis of other diverse forcing classes.

Preprints available at:  ar$\chi$iv | NI12055-SAS | UvA ILLC PP-2012-19 | HBM 446