Philosophy of set theory, Fall 2011, NYU PH GA 1180

I taught a course in Fall 2011 at NYU entitled Topics in Logic: set theory and the philosophy of set theory, aimed at graduate students in philosophy and others who want to gain greater understanding of some of the set-theoretic topics central to work in the philosophy of set theory.  The course began with a review of the mathematical ideas, including a presentation of large cardinals, strong axioms of infinity and their associated elementary embeddings of the universe, and forcing, emphasizing the connection with the Boolean ultrapower and Boolean-valued models, but discussing the alternative formalizations. The second part of the course covers some of the philosophical literature, including what it means to accept or believe mathematical axioms, whether mathematics needs new axioms, the criteria one might use when adopting new axioms, and the question of pluralism and categoricity in set theory.

Here is a partial list of our readings:

1. Mathematical background.

2.  Penelope Maddy, “Believing the axioms”, in two parts.  JSL vols. 52 and 53. Part 1Part 2

3. Chris Freiling, “Axioms of Symmetry: throwing darts at the real number line,”
JSL, vol. 51.   http://www.jstor.org/stable/2273955

4. W. N. Reinhardt, “Remarks on reflection principles, large cardinals, and elementary embeddings,” Proceedings of Symposia in Pure Mathematics, Vol 13, Part II, 1974, pp. 189-205.

5. Donald Martin, “Multiple universes of sets and indeterminate truth values,” Topoi 20, 5–16, 2001.

6. Hartry Field, “Which undecidable mathematical sentences have determinate truth values,” as reprinted in his book Truth and the Absence of Fact, Oxford University Press, 2001.

7. A brief selection from Marc Balaguer, Platonism and Anti-Platonism in Mathematics, Oxford University Press, 1998, describing the plenitudinous Platonism position.

8. Daniel Isaacson, “The reality of mathematics and the case of set theory,” 2007.

9. J. D. Hamkins, “The set-theoretic multiverse,” to appear in the Review of Symbolic Logic.

10.  Solomon Feferman, Does mathematics need new axioms? Text of an invited AMS-MAA joint meeting, San Diego, January, 1997.

11. Solomon Feferman, Is the continuum hypothesis a definite mathematical problem? Draft article for the Exploring the Frontiers of Independence lecture series at Harvard University, October, 2011.

12. Peter Koellner, Feferman On the Indefiniteness of CH, a commentary on Feferman’s EFI article.

13. Interpretability of theories, the interpretability degrees and Orey sentences in set theory and arithmetic.  Some of the basic material is found in Per Lindström’s book Aspects of Incompleteness, available at  http://projecteuclid.org/euclid.lnl/1235416274, particularly chapter 6, and some later chapters.

14. Haim Gaifman, “On ontology and realism in mathematics,” to appear in the Review of Symbolic Logic (special issue connected with the NYU philosophy of mathematics conference 2009).

15. Saharon Shelah, “Logical dreams,”  Bulletin of the AMS, 40(20):203–228, 2003. (Pre-publication version available at:http://arxiv.org/abs/math.LO/0211398)

16.  For mathematical/philosophical amusement, Philip Welch and Leon Horsten, “The aftermath.”

It’s been a great semester!

Inner models with large cardinal features usually obtained by forcing

  • A. W.~Apter, V. Gitman, and J. D. Hamkins, “Inner models with large cardinal features usually obtained by forcing,” Archive for Math.~Logic, vol. 51, pp. 257-283, 2012.  
    @article {ApterGitmanHamkins2012:InnerModelsWithLargeCardinals,
    author = {Arthur W.~Apter and Victoria Gitman and Joel David Hamkins},
    affiliation = {Mathematics, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA},
    title = {Inner models with large cardinal features usually obtained by forcing},
    journal = {Archive for Math.~Logic},
    publisher = {Springer},
    issn = {0933-5846},
    keyword = {},
    pages = {257--283},
    volume = {51},
    issue = {3},
    url = {http://jdh.hamkins.org/innermodels},
    eprint = {1111.0856},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    doi = {10.1007/s00153-011-0264-5},
    note = {},
    year = {2012},
    }

We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal $\kappa$ for which $2^\kappa=\kappa^+$, another for which $2^\kappa=\kappa^{++}$ and another in which the least strongly compact cardinal is supercompact. If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model $W$ with a strongly compact cardinal $\kappa$, such that $H_{\kappa^+}^V\subseteq HOD^W$. Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH+V=HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit $\delta$ of ${\lt}\delta$-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results.

What is the theory ZFC without power set?

  • V. Gitman, J. D. Hamkins, and T. A.~Johnstone, “What is the theory ZFC without Powerset?,” Math.~Logic Q., vol. 62, iss. 4–5, pp. 391-406, 2016.  
    @ARTICLE{GitmanHamkinsJohnstone2016:WhatIsTheTheoryZFC-Powerset?,
    AUTHOR = {Victoria Gitman and Joel David Hamkins and Thomas A.~Johnstone},
    TITLE = {What is the theory {ZFC} without {Powerset}?},
    JOURNAL = {Math.~Logic Q.},
    YEAR = {2016},
    volume = {62},
    number = {4--5},
    pages = {391--406},
    month = {},
    note = {},
    abstract = {},
    keywords = {},
    doi = {10.1002/malq.201500019},
    eprint = {1110.2430},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/what-is-the-theory-zfc-without-power-set},
    source = {},
    ISSN = {0942-5616},
    MRCLASS = {03E30},
    MRNUMBER = {3549557},
    MRREVIEWER = {Arnold W. Miller},
    }

This is joint work with Victoria Gitman and Thomas Johnstone.

We show that the theory ZFC-, consisting of the usual axioms of ZFC but with the power set axiom removed-specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered-is weaker than commonly supposed and is inadequate to establish several basic facts often desired in its context. For example, there are models of ZFC- in which $\omega_1$ is singular, in which every set of reals is countable, yet $\omega_1$ exists, in which there are sets of reals of every size $\aleph_n$, but none of size $\aleph_\omega$, and therefore, in which the collection axiom sceme fails; there are models of ZFC- for which the Los theorem fails, even when the ultrapower is well-founded and the measure exists inside the model; there are models of ZFC- for which the Gaifman theorem fails, in that there is an embedding $j:M\to N$ of ZFC- models that is $\Sigma_1$-elementary and cofinal, but not elementary; there are elementary embeddings $j:M\to N$ of ZFC- models whose cofinal restriction $j:M\to \bigcup j“M$ is not elementary. Moreover, the collection of formulas that are provably equivalent in ZFC- to a $\Sigma_1$-formula or a $\Pi_1$-formula is not closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory $\text{ZFC}^-$, obtained by using collection rather than replacement in the axiomatization above. These results extend prior work of Zarach.

See Victoria Gitman’s summary post on the article

Generalizations of the Kunen inconsistency, KGRC, Vienna 2011

This is a talk at the research seminar of the Kurt Gödel Research Center, November 3, 2011.

I shall present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself, including generalizations-of-generalizations previously established by Woodin and others.  For example, there is no nontrivial elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or from V to the gHOD, or conversely from gHOD to V; indeed, there can be no nontrivial elementary embedding from any definable class to V.  Other results concern generic embeddings, definable embeddings and results not requiring the axiom of choice.  I will aim for a unified presentation that weaves together previously known unpublished or folklore results along with some new contributions.  This is joint work with Greg Kirmayer and Norman Perlmutter.

Slides | Article

Generalizations of the Kunen inconsistency

  • J. D. Hamkins, G. Kirmayer, and N. L. Perlmutter, “Generalizations of the Kunen inconsistency,” Annals of Pure and Applied Logic, vol. 163, iss. 12, pp. 1872-1890, 2012.  
    @article{HamkinsKirmayerPerlmutter2012:GeneralizationsOfKunenInconsistency,
    title = "Generalizations of the {Kunen} inconsistency",
    journal = "Annals of Pure and Applied Logic",
    volume = "163",
    number = "12",
    pages = "1872 - 1890",
    year = "2012",
    note = "",
    issn = "0168-0072",
    doi = "10.1016/j.apal.2012.06.001",
    eprint = {1106.1951},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = "http://jdh.hamkins.org/generalizationsofkuneninconsistency",
    author = "Joel David Hamkins and Greg Kirmayer and Norman Lewis Perlmutter",
    }

We present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself. For example, there is no elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or indeed from any definable class to V, among many other possibilities we consider, including generic embeddings, definable embeddings and results not requiring the axiom of choice. We have aimed in this article for a unified presentation that weaves together some previously known unpublished or folklore results, several due to Woodin and others, along with our new contributions.

Indestructible strong unfoldability

  • J. D. Hamkins and T. A. Johnstone, “Indestructible strong unfoldability,” Notre Dame J.~Formal Logic, vol. 51, iss. 3, pp. 291-321, 2010.  
    @ARTICLE{HamkinsJohnstone2010:IndestructibleStrongUnfoldability,
    AUTHOR = {Hamkins, Joel David and Johnstone, Thomas A.},
    TITLE = {Indestructible strong unfoldability},
    JOURNAL = {Notre Dame J.~Formal Logic},
    FJOURNAL = {Notre Dame Journal of Formal Logic},
    VOLUME = {51},
    YEAR = {2010},
    NUMBER = {3},
    PAGES = {291--321},
    ISSN = {0029-4527},
    MRCLASS = {03E55 (03E40)},
    MRNUMBER = {2675684 (2011i:03050)},
    MRREVIEWER = {Bernhard A. König},
    DOI = {10.1215/00294527-2010-018},
    URL = {http://jdh.hamkins.org/indestructiblestrongunfoldability/},
    file = F,
    }

Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all ${\lt}\kappa$-closed + $\kappa^+$-preserving forcing. This degree of indestructibility, we prove, is the best possible from this hypothesis within the class of ${\lt}\kappa$-closed forcing. From a stronger hypothesis, however, we prove that the strong unfoldability of $\kappa$ can be made indestructible by all ${\lt}\kappa$-closed forcing. Such indestructibility, we prove, does not follow from indestructibility merely by ${\lt}\kappa$-directed closed forcing. Finally, we obtain global and universal forms of indestructibility for strong unfoldability, finding the exact consistency strength of universal indestructibility for strong unfoldability.

Tall cardinals

  • J. D. Hamkins, “Tall cardinals,” Math.~Logic Q., vol. 55, iss. 1, pp. 68-86, 2009.  
    @ARTICLE{Hamkins2009:TallCardinals,
    AUTHOR = {Hamkins, Joel D.},
    TITLE = {Tall cardinals},
    JOURNAL = {Math.~Logic Q.},
    FJOURNAL = {Mathematical Logic Quarterly},
    VOLUME = {55},
    YEAR = {2009},
    NUMBER = {1},
    PAGES = {68--86},
    ISSN = {0942-5616},
    MRCLASS = {03E55 (03E35)},
    MRNUMBER = {2489293 (2010g:03083)},
    MRREVIEWER = {Carlos A.~Di Prisco},
    DOI = {10.1002/malq.200710084},
    URL = {http://wp.me/p5M0LV-3y},
    file = F,
    }

A cardinal $\kappa$ is tall if for every ordinal $\theta$ there is an embedding $j:V\to M$ with critical point $\kappa$ such that $j(\kappa)\gt\theta$ and $M^\kappa\subset M$.  Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal $\kappa$ can be made indestructible by a variety of forcing notions, including forcing that pumps up the value of $2^\kappa$ as high as desired.

The proper and semi-proper forcing axioms for forcing notions that preserve $\aleph_2$ or $\aleph_3$

  • J. D. Hamkins and T. A. Johnstone, “The proper and semi-proper forcing axioms for forcing notions that preserve $\aleph_2$ or $\aleph_3$,” Proc.~Amer.~Math.~Soc., vol. 137, iss. 5, pp. 1823-1833, 2009.  
    @ARTICLE{HamkinsJohnstone2009:PFA(aleph_2-preserving),
    AUTHOR = {Hamkins, Joel David and Johnstone, Thomas A.},
    TITLE = {The proper and semi-proper forcing axioms for forcing notions that preserve {$\aleph_2$} or {$\aleph_3$}},
    JOURNAL = {Proc.~Amer.~Math.~Soc.},
    FJOURNAL = {Proceedings of the American Mathematical Society},
    VOLUME = {137},
    YEAR = {2009},
    NUMBER = {5},
    PAGES = {1823--1833},
    ISSN = {0002-9939},
    CODEN = {PAMYAR},
    MRCLASS = {03E55 (03E40)},
    MRNUMBER = {2470843 (2009k:03087)},
    MRREVIEWER = {John Krueger},
    DOI = {10.1090/S0002-9939-08-09727-X},
    URL = {http://wp.me/p5M0LV-3v},
    file = F,
    }

We prove that the PFA lottery preparation of a strongly unfoldable cardinal $\kappa$ under $\neg 0^\sharp$ forces $\text{PFA}(\aleph_2\text{-preserving})$, $\text{PFA}(\aleph_3\text{-preserving})$ and $\text{PFA}_{\aleph_2}$, with $2^\omega=\kappa=\aleph_2$.  The method adapts to semi-proper forcing, giving $\text{SPFA}(\aleph_2\text{-preserving})$, $\text{SPFA}(\aleph_3\text{-preserving})$ and $\text{SPFA}_{\aleph_2}$ from the same hypothesis. It follows by a result of Miyamoto that the existence of a strongly unfoldable cardinal is equiconsistent with the conjunction $\text{SPFA}(\aleph_2\text{-preserving})+\text{SPFA}(\aleph_3\text{-preserving})+\text{SPFA}_{\aleph_2}+2^\omega=\aleph_2$.  Since unfoldable cardinals are relatively weak as large cardinal notions, our summary conclusion is that in order to extract significant strength from PFA or SPFA, one must collapse $\aleph_3$ to $\aleph_1$.

Large cardinals with few measures

  • A. W.~Apter, J. Cummings, and J. D. Hamkins, “Large cardinals with few measures,” Proc.~Amer.~Math.~Soc., vol. 135, iss. 7, pp. 2291-2300, 2007.  
    @ARTICLE{ApterCummingsHamkins2006:LargeCardinalsWithFewMeasures,
    AUTHOR = {Arthur W.~Apter and James Cummings and Joel David Hamkins},
    TITLE = {Large cardinals with few measures},
    JOURNAL = {Proc.~Amer.~Math.~Soc.},
    FJOURNAL = {Proceedings of the American Mathematical Society},
    VOLUME = {135},
    YEAR = {2007},
    NUMBER = {7},
    PAGES = {2291--2300},
    ISSN = {0002-9939},
    CODEN = {PAMYAR},
    MRCLASS = {03E35 (03E55)},
    MRNUMBER = {2299507 (2008b:03067)},
    MRREVIEWER = {Tetsuya Ishiu},
    DOI = {10.1090/S0002-9939-07-08786-2},
    URL = {http://jdh.hamkins.org/largecardinalswithfewmeasures/},
    eprint = {math/0603260},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    file = F,
    }

We show, assuming the consistency of one measurable cardinal, that it is consistent for there to be exactly $\kappa^+$ many normal measures on the least measurable cardinal $\kappa$. This answers a question of Stewart Baldwin. The methods generalize to higher cardinals, showing that the number of $\lambda$-strong compactness or $\lambda$-supercompactness measures on $P_\kappa(\lambda)$ can be exactly $\lambda^+$, if $\lambda>\kappa$ is a regular cardinal. We conclude with a list of open questions. Our proofs use a critical observation due to James Cummings.

Extensions with the approximation and cover properties have no new large cardinals

  • J. D. Hamkins, “Extensions with the approximation and cover properties have no new large cardinals,” Fund.~Math., vol. 180, iss. 3, pp. 257-277, 2003.  
    @article{Hamkins2003:ExtensionsWithApproximationAndCoverProperties,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {Extensions with the approximation and cover properties have no new large cardinals},
    JOURNAL = {Fund.~Math.},
    FJOURNAL = {Fundamenta Mathematicae},
    VOLUME = {180},
    YEAR = {2003},
    NUMBER = {3},
    PAGES = {257--277},
    ISSN = {0016-2736},
    MRCLASS = {03E55 (03E40)},
    MRNUMBER = {2063629 (2005m:03100)},
    DOI = {10.4064/fm180-3-4},
    URL = {http://wp.me/p5M0LV-2B},
    eprint = {math/0307229},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    file = F,
    }

If an extension $\bar V$ of $V$ satisfies the $\delta$-approximation and cover properties for classes and $V$ is a class in $\bar V$, then every suitably closed embedding $j:\bar V\to \bar N$ in $\bar V$ with critical point above $\delta$ restricts to an embedding $j\upharpoonright V:V\to N$ amenable to the ground model $V$. In such extensions, therefore, there are no new large cardinals above delta. This result extends work in my article on gap forcing.

Exactly controlling the non-supercompact strongly compact cardinals

  • A. W.~Apter and J. D. Hamkins, “Exactly controlling the non-supercompact strongly compact cardinals,” J.~Symbolic Logic, vol. 68, iss. 2, pp. 669-688, 2003.  
    @ARTICLE{ApterHamkins2003:ExactlyControlling,
    AUTHOR = {Arthur W.~Apter and Joel David Hamkins},
    TITLE = {Exactly controlling the non-supercompact strongly compact cardinals},
    JOURNAL = {J.~Symbolic Logic},
    FJOURNAL = {The Journal of Symbolic Logic},
    VOLUME = {68},
    YEAR = {2003},
    NUMBER = {2},
    PAGES = {669--688},
    ISSN = {0022-4812},
    CODEN = {JSYLA6},
    MRCLASS = {03E35 (03E55)},
    MRNUMBER = {1976597 (2004b:03075)},
    MRREVIEWER = {A.~Kanamori},
    doi = {10.2178/jsl/1052669070},
    eprint = {math/0301016},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://wp.me/p5M0LV-2x},
    }

We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and unify previous results of the first author.

A simple maximality principle

  • J. D. Hamkins, “A simple maximality principle,” J.~Symbolic Logic, vol. 68, iss. 2, pp. 527-550, 2003.  
    @article{Hamkins2003:MaximalityPrinciple,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {A simple maximality principle},
    JOURNAL = {J.~Symbolic Logic},
    FJOURNAL = {The Journal of Symbolic Logic},
    VOLUME = {68},
    YEAR = {2003},
    NUMBER = {2},
    PAGES = {527--550},
    ISSN = {0022-4812},
    CODEN = {JSYLA6},
    MRCLASS = {03E35 (03E40)},
    MRNUMBER = {1976589 (2005a:03094)},
    MRREVIEWER = {Ralf-Dieter Schindler},
    DOI = {10.2178/jsl/1052669062},
    URL = {http://wp.me/p5M0LV-2v},
    month = {},
    eprint = {math/0009240},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

In this paper, following an idea of Christophe Chalons, I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence$\varphi$ holding in some forcing extension $V^{\mathbb{P}}$ and all subsequent extensions $V^{\mathbb{P}*\mathbb{Q}}$ holds already in $V$. It follows, in fact, that such sentences must also hold in all forcing extensions of $V$. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\Diamond\Box\varphi)\to\Box\varphi$, and is equivalent to the modal theory S5. In this article, I prove that the Maximality Principle is relatively consistent with ZFC. A boldface version of the Maximality Principle, obtained by allowing real parameters to appear in $\varphi$, is equiconsistent with the scheme asserting that $V_\delta$ is an elementary substructure of $V$ for an inaccessible cardinal $\delta$, which in turn is equiconsistent with the scheme asserting that ORD is Mahlo. The strongest principle along these lines is the Necessary Maximality Principle, which asserts that the boldface MP holds in V and all forcing extensions. From this, it follows that $0^\sharp$ exists, that $x^\sharp$ exists for every set $x$, that projective truth is invariant by forcing, that Woodin cardinals are consistent and much more. Many open questions remain.

Indestructibility and the level-by-level agreement between strong compactness and supercompactness

  • A. W.~Apter and J. D. Hamkins, “Indestructibility and the level-by-level agreement between strong compactness and supercompactness,” J.~Symbolic Logic, vol. 67, iss. 2, pp. 820-840, 2002.  
    @ARTICLE{ApterHamkins2002:LevelByLevel,
    AUTHOR = {Arthur W.~Apter and Joel David Hamkins},
    TITLE = {Indestructibility and the level-by-level agreement between strong compactness and supercompactness},
    JOURNAL = {J.~Symbolic Logic},
    FJOURNAL = {The Journal of Symbolic Logic},
    VOLUME = {67},
    YEAR = {2002},
    NUMBER = {2},
    PAGES = {820--840},
    ISSN = {0022-4812},
    CODEN = {JSYLA6},
    MRCLASS = {03E35 (03E55)},
    MRNUMBER = {1905168 (2003e:03095)},
    MRREVIEWER = {Carlos A.~Di Prisco},
    DOI = {10.2178/jsl/1190150111},
    URL = {http://wp.me/p5M0LV-2i},
    eprint = {math/0102086},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Can a supercompact cardinal $\kappa$ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above $\kappa$, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.

Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata

  • A. W.~Apter and J. D. Hamkins, “Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata,” Math.~Logic Q., vol. 47, iss. 4, pp. 563-571, 2001.  
    @ARTICLE{ApterHamkins2001:IndestructibleWC,
    AUTHOR = {Arthur W.~Apter and Joel David Hamkins},
    TITLE = {Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata},
    JOURNAL = {Math.~Logic Q.},
    FJOURNAL = {Mathematical Logic Quarterly},
    VOLUME = {47},
    YEAR = {2001},
    NUMBER = {4},
    PAGES = {563--571},
    ISSN = {0942-5616},
    MRCLASS = {03E35 (03E55)},
    MRNUMBER = {1865776 (2003h:03078)},
    DOI = {10.1002/1521-3870(200111)47:4%3C563::AID-MALQ563%3E3.0.CO;2-%23},
    URL = {http://jdh.hamkins.org/indestructiblewc/},
    eprint = {math/9907046},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

We show that if the weak compactness of a cardinal is made indestructible by means of any preparatory forcing of a certain general type, including any forcing naively resembling the Laver preparation, then the cardinal was originally supercompact. We then apply this theorem to show that the hypothesis of supercompactness is necessary for certain proof schemata.

The wholeness axioms and $V=\rm HOD$

  • J. D. Hamkins, “The wholeness axioms and $V=\rm HOD$,” Arch.~Math.~Logic, vol. 40, iss. 1, pp. 1-8, 2001.  
    @article{Hamkins2001:WholenessAxiom,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {The wholeness axioms and {$V=\rm HOD$}},
    JOURNAL = {Arch.~Math.~Logic},
    FJOURNAL = {Archive for Mathematical Logic},
    VOLUME = {40},
    YEAR = {2001},
    NUMBER = {1},
    PAGES = {1--8},
    ISSN = {0933-5846},
    CODEN = {AMLOEH},
    MRCLASS = {03E35 (03E65)},
    MRNUMBER = {1816602 (2001m:03102)},
    MRREVIEWER = {Ralf-Dieter Schindler},
    DOI = {10.1007/s001530050169},
    URL = {http://wp.me/p5M0LV-1k},
    eprint = {math/9902079},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

The Wholeness Axioms, proposed by Paul Corazza, axiomatize the existence of an elementary embedding $j:V\to V$. Formalized by augmenting the usual language of set theory with an additional unary function symbol j to represent the embedding, they avoid the Kunen inconsistency by restricting the base theory ZFC to the usual language of set theory. Thus, under the Wholeness Axioms one cannot appeal to the Replacement Axiom in the language with j as Kunen does in his famous inconsistency proof. Indeed, it is easy to see that the Wholeness Axioms have a consistency strength strictly below the existence of an $I_3$ cardinal. In this paper, I prove that if the Wholeness Axiom $WA_0$ is itself consistent, then it is consistent with $V=HOD$. A consequence of the proof is that the various Wholeness Axioms $WA_n$ are not all equivalent. Furthermore, the theory $ZFC+WA_0$ is finitely axiomatizable.