Jacob Davis, PhD 2016, Carnegie Mellon University

Jacob Davis successfully defended his dissertation, “Universal Graphs at $\aleph_{\omega_1+1}$ and Set-theoretic Geology,” at Carnegie Mellon University on April 29, 2016, under the supervision of James Cummings. I was on the dissertation committee (participating via Google Hangouts), along with Ernest Schimmerling and Clinton Conley.

Jacob Davis

CMU web pageGoogle+ profile | ar$\chi$iv

The thesis consisted of two main parts. In the first half, starting from a model of ZFC with a supercompact cardinal, Jacob constructed a model in which $2^{\aleph_{\omega_1}} = 2^{\aleph_{\omega_1+1}} = \aleph_{\omega_1+3}$ and in which there is a jointly universal family of size $\aleph_{\omega_1+2}$ of graphs on $\aleph_{\omega_1+1}$.  The same technique works with any uncountable cardinal in place of $\omega_1$.  In the second half, Jacob proved a variety of results in the area of set-theoretic geology, including several instances of the downward directed grounds hypothesis, including an analysis of the chain condition of the resulting ground models.

Universal structures, GC MathFest, February 2014

Midtown in WinterThis will be a talk for the CUNY Graduate Center MathFest, held on the afternoon of Februrary 4, 2014, intended for graduate-school-bound undergraduate students, including prospective students for the CUNY Graduate Center, giving them a chance to meet graduate students and faculty at the CUNY Graduate Center and see the kind of mathematics that is done here.

In this 30 minute talk, I’ll introduce the concept of a universal structure, with various examples, including the countable random graph, the surreal number line and the hypnagogic digraph.

MathFest Program/schedule

Universal structures: the countable random graph, the surreal numbers and the hypnagogic digraph, Swarthmore College, October 2013

I’ll be speaking for the Swarthmore College Mathematics and Statistics Colloquium on October 8th, 2013.






Abstract.  I’ll be giving an introduction to universal structures in mathematics, where a structure $\mathcal{M}$ is universal for a class of structures, if every structure in that class arises as (isomorphic to) a substructure of $\mathcal{M}$.  For example, Cantor proved that the rational line $\mathbb{Q}$ is universal for all countable linear orders.  Is a corresponding fact true of the real line for linear orders of that size? Are there countably universal partial orders? Is there a countably universal graph? directed graph? acyclic digraph?  Is there a countably universal group? We’ll answer all these questions and more, with an account of the countable random graph, generalizations to the random graded digraphs, Fraïssé limits, the role of saturation, the surreal numbers and the hypnagogic digraph.  The talk will conclude with some very recent work on universality amongst the models of set theory.


Universality, saturation and the surreal number line, Shanghai, June 2013

Fudan bridgeThis will be a short lecture series given at the conclusion of the graduate logic class in the Mathematical Logic group at Fudan University in Shanghai, June 13, 18 (or 20), 2013.

I will present an elementary introduction to the theory of universal orders and relations and saturated structures.  We’ll start with the classical fact, proved by Cantor, that the rational line is the universal countable linear order.  But what about universal partial orders, universal graphs and other mathematical structures?  Is there a computable universal partial order?  What is the countable random graph? Which orders embed into  the power set of the natural numbers under the subset relation $\langle P(\mathbb{N}),\subset\rangle$? Proceeding to larger and larger universal orders, we’ll eventually arrive at the surreal numbers and the hypnagogic digraph.

Fudan University seal


Playing go with Jiachen