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This talk includes joint work with Sam Coskey and Russell
Miller. Our paper is

S. Coskey, J. D. Hamkins, R. Miller, “The hierarchy of
equivalence relations on the natural numbers under
computable reducibility,” forthcoming.

A preprint is available on my web page: http://jdh.hamkins.org
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Other researchers, related work
Some of the ideas have arisen independently several times.

Claudio Bernadi and Andrea Sorbi, “Classifying positive
equivalence relations,” JSL 48(3):529–538, 1983.
Su Gao and Peter Gerdes, “Computably enumerable
equivalence relations,” Studia Logica, 67(1):27–59, 2001.
Julia F. Knight, Sara Miller, M. Vanden Boom, “Turing
computable embeddings,” JSL 72(3):901–918, 2007.
Sam Buss, Yijià Chen, Jörg Flum, Sy-David Friedman and
Moritz Müller, “Strong isomorphism reductions in
complexity theory,” JSL, 2011.
Akaterina B. Fokina, Sy-David Friedman, “On Sigma-1-1
equivalence relations over the natural numbers,” MLQ, to
appear.
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Borel equivalence relations

Many natural equivalence relations in mathematics can be
viewed as equivalence relations on a standard Borel space.

isomorphism of countable structures
isomorphism of countable groups, graphs, linear orders
isometries of separable Banach spaces, etc.

The concept of Borel reducibility, due to Friedman and Stanley,
allows us to compare the difficulty of classification problems.
We can say that a classification problem is wild or tame.

The subject has been an enormous success, a very fruitful
interaction of logic with the rest of mathematics.
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Borel reducibility
One equivalence relation is Borel reducible to another, E ≤B F ,
if there is a Borel function f such that

a E b ⇐⇒ f (a) F f (b).

Thus, f maps E-classes to F -classes and thereby provides a
classification of E using F -classes.

In this case, the E-classification problem is no harder than the
F -classification problem.

Goal of the Borel theory: to study the hierarchy of such
classification problems under Borel reducibility (and
mathematicians care).

Equivalence relations on N, INI, Cambridge 2012 Joel David Hamkins, New York



Introduction, Equivalences of c.e. sets Richness of the hierarchy Classifications of c.e. structures

A computable analogue
We aim to adapt the Borel theory to the computability context,
with equivalence relations on N.

Namely, E is computably reducible to F , written E ≤c F , when
there is a computable function f : N→ N such that

n E m ⇐⇒ f (n) F f (m).

Versions of this notion have arisen several times independently:
Bernadi, Sorbi; Gao, Gerdes; Fokina, Friedman; Coskey,
Hamkins, Miller.

Our new focus: natural relations on c.e. structures. The
resulting theory is an attractive blend of methods and ideas
from computability theory, descriptive set theory and other
parts of mathematics.
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A copy of the many-one degrees

For A ⊆ N, consider the relation EA,Ac with two classes:

A Ac

If A is c.e., this has complexity ∆0
2.

Theorem

The relation EA,Ac reduces to EB,Bc if and only if A is many-one
reducible to B or to Bc .

Thus, the hierarchy contains essentially a copy of the many-one
degrees, even among the relations with only two classes.
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A copy of the 1-degrees
For A ⊆ N, consider the relation EA with classes:

A Ac

Thus, n EA m iff n,m ∈ A or n = m. If A is c.e., then so is EA.

Theorem

If A,B ⊆ N are c.e. non-computable, then EA ≤c EB iff A ≤1 B.

Proof.

A 1-reduction of A to B also reduces EA to EB. Conversely, a
reduction of EA to EB gives rise to a 1-reduction A ≤1 B.
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Orbit equivalence relations
The orbit equivalence relation of the action of a group Γ on N is

x EΓ y iff ∃γ ∈ Γ y = γx .

Theorem

The c.e. equivalence relations are precisely the orbit
equivalence relations induced by computable actions of
computable groups.

Proof.

Every such orbit relation is c.e. Conversely, if E is c.e., let Γ be
a computable copy of the free group Fω with generators xi . If
(n,m) ∈ E at stage s, let x〈s,n,m〉 act by swapping n and m only.
This is a computable action with orbit E .
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Summary of the hierarchy so far

c.e.
comp

=1

=2

=N
···

Uce

=ce

EA

EA,Ac
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Equivalence relations on c.e. sets
A deeper theory arises in the context of equivalence relations
on c.e. sets, such as isomorphism relations on c.e. graphs and
other c.e. structures. We begin by adapting the key relations of
the Borel theory by considering them as relations on c.e. sets.

An equivalence relation E on the c.e. sets gives rise to

e Ece e′ ⇐⇒ We E We′ ,

For example, the equality relation on c.e. sets,

e =ce e′ ⇐⇒ We = We′ .

This is a Π0
2-complete set of pairs. Indeed, it has a Π0

2-complete
class [e], where We = N.
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Equality on c.e. sets, =ce

Theorem

Every c.e. equivalence relation lies properly below =ce.

Proof.

Let E be an arbitrary c.e. relation. Define a reduction from E to
=ce by mapping each n to a program f (n) which enumerates
[n]E .

Conversely, there can be no reduction from =ce to E since =ce

is Π0
2-complete and E is c.e.
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Almost equality, Ece
0

The almost-equality relation E0 similarly plays an essential role
in the Borel theory.

A E0 B ⇐⇒ symmetric difference A 4 B is finite

Theorem

Equality =ce lies strictly below almost-equality Ece
0 .

Proof.

To reduce =ce to Ece
0 , amplify differences: given e, let Wf (e)

have (n,0), (n,1), (n,2), . . . whenever n ∈We. Thus,
We 6= We′ =⇒ Wf (e)4Wf (e′) is infinite. Conversely, there is no
computable reduction from Ece

0 to =ce, since Ece
0 is

Σ0
3-complete, having a class equivalent to COF, whilst =ce is

just Π0
2.
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Analogue of Silver, Glimm-Effros dichotomy?

To what extent will the computable reducibility hierarchy mirror
the structure of Borel reducibility?

For example, one might hope for an analogues of Silver’s
theorem, that =ce is minimal in some large class. Unfortunately,
this fails, as we shall see.

Are there any relations lying properly between =ce and Ece
0 ?

More generally, is there a form of the Glimm-Effros dichotomy
in this context? In other words, is there a large collection of
equivalence relations E such that if =ce lies strictly below E ,
then Ece

0 lies below E?
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More c.e. analogues of Borel relations

We may code subsets of N× N with subsets of N.

(An) E1 (Bn) iff for almost all n, An = Bn.
A E2 B iff

∑
n∈A4B 1/n <∞.

(An) E3 (Bn) iff for all n, An E0 Bn.
(An) Eset (Bn) iff {An | n ∈ N } = {Bn | n ∈ N }.
Density: A Z0 B iff lim |(A 4 B) ∩ n|/n = 0.

We consider the analogues on c.e. sets.
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The complete diagram of Borel reducibilities on left.

=

E0

E1 E2 E3

Eset Z0

=ce

Ece
1 ∼ Ece

0

Ece
2 Ece

3

Ece
set Z ce

0

The c.e. analogues on right. (Not sure if this is complete.)
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Complexity below equality =ce

In contrast to the Borel theory, in the computable theory there is
a rich collection of equivalence relations properly below
equality =ce.

This is a departure from the Borel theory, where Silver’s
theorem implies that = is continuously reducible to every Borel
equivalence relation (with uncountably many classes).

Equivalence relations on N, INI, Cambridge 2012 Joel David Hamkins, New York



Introduction, Equivalences of c.e. sets Richness of the hierarchy Classifications of c.e. structures

Same minimum, same maximum relations

Same minimum:

e Ece
min e′ ⇐⇒ min(We) = min(We′)

Same maximum:

e Ece
max e′ ⇐⇒ max(We) = max(We′)

Both are reducible to =ce, by saturating We upwards for Emin
and downwards for Emax.

These saturation reductions are computable selectors,
choosing a representative of each class.
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Max not reducible to Min

Theorem

Ece
max is not computably reducible to Ece

min. Consequently, Ece
min

lies properly below =ce.

Proof.

This holds because Ece
min is ∆0

2, while Ece
max is Π0

2 complete.
Even the Emax class INF = {e | |We| = ℵ0 } is Π0

2 complete.

In fact, we show next that Ece
max and Ece

min are incomparable, and
both lie properly below =ce.
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Monotonicity lemma

f well-defined: We = We′ =⇒ Wf (e) = Wf (e′).
f monotone: We ⊆We′ =⇒ Wf (e) ⊆Wf (e′).

Monotonicity Lemma

Every computable well-defined f ... N→ N is monotone.

Proof.

Suppose We ⊆We′ and x ∈Wf (e). Using the recursion
theorem, let Wp look like We until x appears in Wf (p), and then
Wp looks like We′ . Note that x must appear in Wf (p), since
otherwise Wp = We and so Wf (p) = Wf (e). But now Wp = We′

and so x ∈Wf (p) = Wf (e′), as desired.
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Min not reducible to Max

Theorem

Ece
min does not reduce to Ece

max. Consequently, Ece
max <c=ce.

Proof.

Suppose f : Ece
min ≤c Ece

max. By saturating downwards, assume
without loss f is well-defined. For each n, let Wen = [n,∞), a
monotone descreasing sequence. By monotonicity lemma,
Wf (en) is therefore also monotone decreasing. Moreover, since
min(Wen ) are distinct, it follows that max(Wf (en)) are distinct,
impossible.
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Reducibility diagram

=ce

Ece
min Ece

max

Ece
med

Ece
0

This diagram is complete for these relations.

Equivalence relations on N, INI, Cambridge 2012 Joel David Hamkins, New York



Introduction, Equivalences of c.e. sets Richness of the hierarchy Classifications of c.e. structures

Generalization to other orders
For computable linear ordering L and W ⊆ L, consider
Dedekind cut

cutL(W ) = { l ∈ L | ∃w ∈W (l <L w) }.

Same cut relation

e EL e′ ⇐⇒ cutL(We) = cutL(We′)

Same hull relation

e HL e′ ⇐⇒ We,We′ have same convex hull in L

Both EL and HL reduce to =ce by saturating We.
Both EL and EL∗ computably reduce to HL.
Note Emax = Eω and Emin = Eω∗ .
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Complete embeddings

Consider the computable Dedekind completion: L is the set of
c.e. cuts of L.

Define computably embeddable L1 ↪→c L2, if there is
computable α ... N→ N such that

cutL1(We) < cutL1(We′) ⇐⇒ cutL2(Wα(e)) < cutL2(Wα(e′)).

Theorem

If L1,L2 computable linear orders, then EL1 ≤ EL2 iff L1 ↪→c L2.

The result generalizes to partial orders.
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Cuts and Hulls in computable ordinals

Hω

EωEmax ∼ Eω∗∼ Emin

EQ

· ·
·

Eα

· · ·

· · ·
Eα∗

· ·
·

···

Hα

···

∼ =ce

Figure: Diagram showing the cut and hull relations for computable
ordinals α and their reverse orderings α∗. In 2017 this will be the first
diagram to land on Gliese 581g.
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Enumerable relations

A major focus for Borel theory: countable Borel equivalence
relations.

The Lusin/Novikov theorem: every countable Borel equivalence
relation has a uniform Borel enumeration of each class.

The Feldman/Moore argument uses this to show every
countable Borel equivalence relation is the orbit relation of a
Borel action of a countable group.

We develop the computable analogue of this theory.
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Computable analogue of Lusin/Novikov

An equivalence relation E on c.e. sets is enumerable in the
indices if there is computable α ... N× N→ N with

We E We′ ⇐⇒ ∃n Wα(n,e) = We′ .

This is the computable analogue of the Lusin/Novikov property
for countable Borel equivalence relations.

For example, Ece
0 has this property, since let Wα(n,e) be We

modified to have nth finite set at bottom. As n varies, Wα(e,n)

enumerates all finite modifications of We, and so α witnesses
that Ece

0 is enumerable in the indices.
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Enumerable relations reduce to Eset

Theorem

If Ece is enumerable in the indices, then Ece ≤ Ece
set.

Proof.

Simply map program e to a program for a subset of N× N
which puts Wα(n,e) on the nth column.

Of course Ece
set is not itself enumerable, since enumerable

relations are easily seen to be Σ0
3, whereas Ece

set is Π0
3 complete.
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Computable group actions

The action of a computable group Γ acting on the c.e. sets is
computable in the indices if there is computable α ... N× N→ N
with Wα(γ,e) = γWe.

For example, left translation action of Γ on c.e. subsets of Γ.

Induced orbit equivalence relation

e Ece
Γ e′ ⇐⇒ ∃γ ∈ Γ We′ = γWe.

One would prefer an analogue of Feldman/Moore, saying that
every enumerable relation is the orbit relation of an action
computable in the indices.

Unfortunately, this is not the case.
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Counterexamples to orbit equivalence relations

Theorem

If E is an equivalence relation on c.e. sets and |[We]E | ≥ 2 for
some e with We ⊆We′ for all e′ Ece e, then E is not an orbit
equivalence of any action computable in the indices.

The proof uses monotonicity: the action can’t map the larger
sets back to the minimal element We.

Corollary

Ece
0 is not induced by any action which is computable in the

indices.
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enumerable

orbit

=ce

Ece
0

Ece
Γ

UFω

Ece
set

The enumerable relations, with orbit equivalence relations.
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Isomorphism of c.e. structures

Definition

Let ∼=ce
bin denote the isomorphism relation on the codes for c.e.

binary relations. That is, let e ∼=ce
bin e′ if and only if We and We′ ,

thought of as binary relations on N, are isomorphic.

We remark that in order to analyze the isomorphism on
arbitrary L-structures, it is enough to consider just the binary
relations, since if L is a computable language then the
isomorphism relation ∼=ce

L on the c.e. L-structures is computably
reducible to ∼=ce

bin.
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What is isomorphism on c.e. graphs?
Two different ways to treat isomorphism of c.e. structures.

Could restrict ∼=ce
bin to indices for We that are the right kind

of structure. (Problem: these relations are not total)
Or, identify structures as c.e. substructures of fixed
universal structure.

For example, fix a computable copy Γ of the countable random
graph, and we define ∼=ce

graph to be the isomorphism relation on
the c.e. subsets of Γ.

Similarly, we consider c.e. linear orders as subsets of a copy of
Q, and c.e. trees as the downward closure of c.e. subsets of
N<N.

In some cases, the two approaches are equivalent.
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Isomorphisms of c.e. graphs, linear orders, trees

Theorem

Isomorphism of binary relations ∼=ce
bin is computably bireducible

with each of isomorphisms of graphs, linear orders and trees.

∼=ce
graph

∼=ce
lo

∼=ce
tree

The classical reductions go through easily.

Part of the reason it works is that these classical reductions use
only the positive information about the structures; they need to
know when two elements are related, but not instances of
non-relation.
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Same set is strictly below ∼=bin

The isomorphism relation of binary relations ∼=ce
bin is very high in

our hierarchy. For example,

Theorem

Ece
set lies properly below ∼=ce

bin.

Proof.

To reduce Ece
set to ∼=ce

bin, let Wf (e) be a code for We as a
hereditarily countable set. In other words, Wf (e) is a
well-founded tree coding the transitive closure of {We}.

The absence of any reverse reduction follows from complexity,
since Ece

set is Π0
4.
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Isomorphism of c.e. groups
Isomorphism of c.e. groups admits several coding methods.

We could consider indices e such that We, as a subset of
N× N× N, is the graph of a group operation, with
corresponding isomorphism relation ∼=ce

group on such indices.

Alternatively we can code a group by a presentation, a set of
words in Fω, thinking of the group as the corresponding
quotient. Thus, e ∼=ce

pres e′ iff We and We′ , as sets of relations in
Fω, have isomorphic quotients.

Thus, we have two classification problems: for computable
group operations, and for computably presented groups.

Theorem
∼=ce

group ≤ ∼=ce
bin ≤ ∼=

ce
pres.
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Isomorphisms and computable isomorphisms

=ce

'ce
bin

Ece
set

∼=ce
L

∼=ce
bin ∼ ∼=

ce
graph ∼ ∼=

ce
lo ∼ ∼=

ce
tree

∼=ce
group

∼=ce
pres
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Relations from computability theory
Consider the principal equivalences of computability, as
relations on (indices for) the c.e. sets.

=ce

=ce
m

=ce
1

'ce
bin

=T

Turing equivalence, =T

Many-one equivalence, =m

one-equivalence, =1
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Many open problems remain

This research area is wide open, and there are easily dozens of
open questions that would be interesting to work on. Pick your
favorite equivalence relations on c.e. sets or structures, and
find out how they fit into the hierarchy.

There are many dissertation problems hiding here.

Furthermore, it is a mathematically fulfilling research area
Interesting questions, easy to get started
New, exciting, deep, ripe for progress
Connected deeply with logic and computability
Connected deeply with the rest of mathematics
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Thank you.

Joel David Hamkins
The City University of New York

http://jdh.hamkins.org

http://cantorsattic.info
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