The hierarchy of equivalence relations on \mathbb{N} under computable reducibility

Joel David Hamkins

The City University of New York
College of Staten Island of CUNY and
The CUNY Graduate Center

CUNY MAMLS, March 2012
This talk includes joint work with Sam Coskey and Russell Miller. Our paper is

S. Coskey, J. D. Hamkins, R. Miller, “The hierarchy of equivalence relations on the natural numbers under computable reducibility,” forthcoming.

A preprint is available on my web page: http://jdh.hamkins.org
Other researchers, related work

Some of the ideas have arisen independently several times.

Borel equivalence relations

Many naturally arising equivalence relations, such as isomorphisms of various countable structures (groups, graphs, fields, linear orders, isometries of separable Banach spaces), can be viewed as equivalence relations, often Borel relations, on a standard Borel space.

The classification problems for those structures is the problem of assigning invariants to the equivalence classes.

The concept of *Borel reducibility*, due to H. Friedman and L. Stanley, allows us to compare the relative difficulty of classification problems, to allow us to say that a classification problem is wild or tame.

The subject has been enormously successful, a very fruitful interaction of logic with the rest of the mathematics.
Borel reducibility

One equivalence relation is *Borel reducible* to another, $E \leq_B F$, if there is a Borel function f such that

$$a E b \iff f(a) F f(b).$$

Thus, f maps E-classes to F-classes and thereby provides a classification of E using F-classes.

In this case, the E-classification problem is no harder than the F-classification problem.

Goal of the Borel theory: to study the hierarchy of such classification problems under Borel reducibility (and mathematicians care).
Computable reducibility

We aim to adapt the Borel theory to the computability context, with equivalence relations on \(\mathbb{N} \).

Namely, \(E \) is computably reducible to \(F \), written \(E \leq_c F \), when there is a computable function \(f : \mathbb{N} \to \mathbb{N} \) such that

\[
 n E m \iff f(n) F f(m).
\]

Versions of this notion have arisen several times independently: Bernadi, Sorbi; Gao, Gerdes; Fokina, Friedman; Coskey, Hamkins, Miller.

Our new focus: natural relations on c.e. structures. The resulting theory is an attractive blend of methods and ideas from computability theory, descriptive set theory and other parts of mathematics.
Reducibility is not relative computability

Although $E \leq_c F$ implies $E \leq_T F$ via

$$n E m \iff f(n) F f(m),$$

nevertheless the Turing degree of E as a set of pairs does not determine its place in the hierarchy of reducibility.

The Borel theory has many examples of low-complexity equivalence relations with wild classification problems; and the same for computable reducibility.

- Much of computable model theory is about the comparative complexity of individual structures.
- Computable reducibility is about the comparative difficulty of classification problems.
Computable relations are at the bottom

Theorem

The computable equivalence relations on \mathbb{N} are exactly those computably bireducible with $=_{\mathbb{N}}$ or with $=_{n}$.

$=_{n}$ is equality on $\{0, 1, \ldots, n - 1\}$, with rest of \mathbb{N} in $[n - 1]$.

Proof.

If E has $\geq n$ classes, then $=_{n}$ reduces to E. And if E is computable (or even just c.e. or co-c.e.) with n classes, then conversely. If E is Π^0_1 with infinitely many classes, then $=_{\mathbb{N}}$ reduces to E. And computable E reduces to $=_{\mathbb{N}}$.

Thus, the computable equivalence relations are classified by their number of equivalence classes.
A copy of the many-one degrees

For $A \subseteq \mathbb{N}$, consider the relation E_{A,A^c} with two classes:

\[
\begin{array}{c|c}
A & A^c \\
\hline
\end{array}
\]

If A is c.e., this has complexity Δ^0_2.

Theorem

The relation E_{A,A^c} reduces to E_{B,B^c} if and only if A is many-one reducible to B or to B^c.

Thus, the hierarchy contains essentially a copy of the many-one degrees, even among the relations with only two classes.
A copy of the 1-degrees

For $A \subseteq \mathbb{N}$, consider the relation E_A with classes:

Thus, $n E_A m$ iff $n, m \in A$ or $n = m$. If A is c.e., then so is E_A.

Theorem

*If $A, B \subseteq \mathbb{N}$ are c.e. non-computable, then $E_A \leq_c E_B$ iff $A \leq_1 B$.***

Proof.

A 1-reduction of A to B also reduces E_A to E_B. Conversely, a reduction of E_A to E_B gives rise to a 1-reduction $A \leq_1 B$.

Equivalence relations on \mathbb{N}, CUNY MAMLS 2012

Joel David Hamkins, New York
c.e. relations incomparable with $\equiv_\mathbb{N}$

Corollary

There exist c.e. relations incomparable with $\equiv_\mathbb{N}$.

Proof.

Consider the relation E_A where A is a simple set (c.e. co-infinite set whose complement contains no infinite c.e. sets). Since A is not computable, neither is E_A, and it follows that E_A is not reducible to $\equiv_\mathbb{N}$. On the other hand, if f is a computable reduction from $\equiv_\mathbb{N}$ to E_A then there exists $n \in \mathbb{N}$ such that $f(\mathbb{N} \setminus \{n\}) \subseteq A^c$. But this is a contradiction, since $f(\mathbb{N} \setminus \{n\})$ is c.e. and infinite.

\[\square \]
Universal c.e. relation

There is a universal c.e. equivalence relation.

Theorem

There is a c.e. relation U_{ce} *to which every c.e. equivalence relation is reducible.*

Proof.

Let E_e be the e^{th} c.e. equivalence relation (take symmetric, transitive reflexive closure of W_e). Define $(e, a) \ U_{ce} (e', a')$ iff $e = e'$ and $a \ E_e a'$. This is c.e., and E_e reduces via $a \mapsto (e, a)$.

Orbit equivalence relations

The *orbit equivalence relation* of the action of a group Γ on \mathbb{N} is

$$x \ E_{\Gamma} \ y \iff \exists \gamma \in \Gamma \ y = \gamma x.$$

Theorem

The c.e. equivalence relations are precisely the orbit equivalence relations induced by computable actions of computable groups.

Proof.

Every such orbit relation is c.e. Conversely, if E is c.e., let Γ be a computable copy of the free group F_ω with generators x_i. If $(n, m) \in E$ at stage s, let $x_{(s,n,m)}$ act by swapping n and m only. This is a computable action with orbit E.

Equivalence relations on \mathbb{N}, CUNY MAMLS 2012

Joel David Hamkins, New York
Summary of the hierarchy so far
Equivalence relations on c.e. sets

A deeper theory arises in the context of equivalence relations on c.e. sets, such as isomorphism relations on c.e. graphs and other c.e. structures. We begin by adapting the key relations of the Borel theory by considering them as relations on c.e. sets.

An equivalence relation E on the c.e. sets gives rise to

$$e E^{ce} e' \iff W_e E W_{e'},$$

For example, the equality relation on c.e. sets,

$$e =^{ce} e' \iff W_e = W_{e'},$$

This is a Π^0_2-complete set of pairs. Indeed, it has a Π^0_2-complete class $[e]$, where $W_e = \mathbb{N}$.

Equivalence relations on \mathbb{N}, CUNY MAMLS 2012, Joel David Hamkins, New York
Introduction, Equivalences of c.e. sets

Below equality,

Classifications of c.e. structures

Computability relations

Equivalences of c.e. sets

Equality on c.e. sets, \equiv^{ce}

Theorem

Every c.e. equivalence relation lies properly below \equiv^{ce}.

Proof.

Let E be an arbitrary c.e. relation. Define a reduction from E to \equiv^{ce} by mapping each n to a program $f(n)$ which enumerates $[n]_E$.

Conversely, there can be no reduction from \equiv^{ce} to E since \equiv^{ce} is Π^0_2-complete and E is c.e.
Almost equality, E_0^{ce}

The almost-equality relation E_0 similarly plays an essential role in the Borel theory.

$$A E_0 B \iff \text{symmetric difference } A \triangle B \text{ is finite}$$

Theorem

*Equality $=^{ce}$ lies strictly below almost-equality E_0^{ce}.***

Proof.

To reduce $=^{ce}$ to E_0^{ce}, amplify differences: given e, let $W_{f(e)}$ have $(n,0), (n,1), (n,2), \ldots$ whenever $n \in W_e$. Thus, $W_e \neq W_{e'} \implies W_{f(e)} \triangle W_{f(e')} \text{ is infinite.}$ Conversely, there is no computable reduction from E_0^{ce} to $=^{ce}$, since E_0^{ce} is Σ_3^0-complete, having a class equivalent to COF, whilst $=^{ce}$ is just Π_2^0.

Equivalence relations on \mathbb{N}, CUNY MAMLS 2012, Joel David Hamkins, New York
Introduction, Equivalences of c.e. sets

Below equality, \equiv^{ce}

Classifications of c.e. structures

Computability relations

Equivalences of c.e. sets

Analogue of Silver, Glimm-Effros dichotomy?

To what extent will the computable reducibility hierarchy mirror the structure of Borel reducibility?

For example, one might hope for an analogues of Silver’s theorem, that \equiv^{ce} is minimal in some large class. Unfortunately, this fails, as we shall see.

Are there any relations lying properly between \equiv^{ce} and E_0^{ce}? More generally, is there a form of the Glimm-Effros dichotomy in this context? In other words, is there a large collection of equivalence relations E such that if \equiv^{ce} lies strictly below E, then E_0^{ce} lies below E?
More c.e. analogues of Borel relations

We may code subsets of $\mathbb{N} \times \mathbb{N}$ with subsets of \mathbb{N}.

- $(A_n) E_1 (B_n)$ iff for almost all n, $A_n = B_n$.
- $A E_2 B$ iff $\sum_{n \in A \triangle B} 1/n < \infty$.
- $(A_n) E_3 (B_n)$ iff for all n, $A_n E_0 B_n$.
- $(A_n) E_{\text{set}} (B_n)$ iff $\{ A_n \mid n \in \mathbb{N} \} = \{ B_n \mid n \in \mathbb{N} \}$.
- Density: $A Z_0 B$ iff $\lim |(A \triangle B) \cap n|/n = 0$.

We consider the analogues on c.e. sets.
The complete diagram of Borel reducibilities on left.

The c.e. analogues on right. (Not sure if this is complete.)
The complete diagram of Borel reducibilities on left.

The c.e. analogues on right. (Not sure if this is complete.)
Theorem

The positive reductions of the previous diagram hold.

Proof.

Use classical Borel reductions, which are computable here.

- E_0 reduces to E_3 by the map $A \mapsto \mathbb{N} \times A$.
- E_0 reduces to E_1 via $A \mapsto \{ \langle x, y \rangle \mid y \geq x \land y \in A \}$, so that the column x equals $A - \{0, \ldots, x - 1\}$.
- $E_0 \leq E_2$ via $A \mapsto \bigcup_{n \in A} I_n$, where $\sum_{i \in I_n} 1/i \geq 1$.
- $E_0 \leq_c Z_0$ via $f(A) = \bigcup_{n \in A} [2^n, 2^{n+1})$.
- $E_3 \leq Z_0$ via $(A_n) \mapsto \bigcup \pi_n(f(A_n))$, where I_n has density $1/2^n$ and $\pi_n : I_n \cong \mathbb{N}$.
- To reduce $E_3 \leq_c E_{\text{set}}$, for each $s \in 2^{<\mathbb{N}}$, place $1^n \upharpoonright 0 \upharpoonright \mathbb{N} \upharpoonright (A \upharpoonright |s|)$ as a column of $f((A_n))$.
E_3 does not reduce

Theorem

$E_{3\text{ce}}$ is not computably reducible to any of $E_{0\text{ce}}, E_{1\text{ce}}$ or $E_{2\text{ce}}$.

Proof.

A direct arithmetic complexity argument.

First, $E_{0\text{ce}}, E_{1\text{ce}},$ and $E_{2\text{ce}}$ are all easily Σ_3^0.

Meanwhile, $E_{3\text{ce}}$ is not Σ_3^0, and indeed, has a Π_3^0-complete class, the set of indices e for c.e. subsets of $\mathbb{N} \times \mathbb{N}$ with every column finite.
We were very surprised by the following:

Theorem

$E_{1}^{ce} \leq E_{0}^{ce}$. Hence, E_{1}^{ce} and E_{0}^{ce} are computably bireducible.

(See our paper for the proof.)

This is a deviation from the situation in the Borel theory, where $E_{0} <_{B} E_{1}$.

Are there other surprises?
Complexity below equality $=^{ce}$

In contrast to the Borel theory, in the computable theory there is a rich collection of equivalence relations properly below equality $=^{ce}$.

This is a departure from the Borel theory, where Silver’s theorem implies that $=$ is continuously reducible to every Borel equivalence relation (with uncountably many classes).

We shall also show that there are relations on c.e. sets which are computably incomparable with $=^{ce}$.
Same minimum, Same maximum relations

Same minimum:

\[e \ E_{\text{min}}^{ce} e' \iff \min(W_e) = \min(W_{e'}) \]

Same maximum:

\[e \ E_{\text{max}}^{ce} e' \iff \max(W_e) = \max(W_{e'}) \]

Both are reducible to \(=^{ce} \), by saturating \(W_e \) upwards for \(E_{\text{min}} \) and downwards for \(E_{\text{max}} \).

These saturation reductions are computable selectors, choosing a representative of each class.
Max not reducible to Min

Theorem

\[E_{\text{max}}^{ce} \text{ is not computably reducible to } E_{\text{min}}^{ce}. \text{ Consequently, } E_{\text{min}}^{ce} \text{ lies properly below } =^{ce}. \]

Proof.

This holds because \(E_{\text{min}}^{ce} \) is \(\Delta_2^0 \), while \(E_{\text{max}}^{ce} \) is \(\Pi_2^0 \) complete. Even the \(E_{\text{max}} \) class \(\text{INF} = \{ e \mid |W_e| = \aleph_0 \} \) is \(\Pi_2^0 \) complete.

In fact, we show next that \(E_{\text{max}}^{ce} \) and \(E_{\text{min}}^{ce} \) are incomparable, and both lie properly below \(=^{ce} \).
Monotonicity lemma

- **Well-defined**: \(W_e = W_{e'} \implies W_{f(e)} = W_{f(e')} \).
- **Monotone**: \(W_e \subseteq W_{e'} \implies W_{f(e)} \subseteq W_{f(e')} \).

Monotonicity Lemma

Every computable well-defined \(f : \mathbb{N} \to \mathbb{N} \) is monotone.

Proof.

Suppose \(W_e \subseteq W_{e'} \) and \(x \in W_{f(e)} \). Using the recursion theorem, let \(W_p \) look like \(W_e \) until \(x \) appears in \(W_{f(p)} \), and then \(W_p \) looks like \(W_{e'} \). Note that \(x \) must appear in \(W_{f(p)} \), since otherwise \(W_p = W_e \) and so \(W_{f(p)} = W_{f(e)} \). But now \(W_p = W_{e'} \) and so \(x \in W_{f(p)} = W_{f(e')} \), as desired.
Min not reducible to Max

Theorem

\[E_{\text{min}}^{ce} \text{ does not reduce to } E_{\text{max}}^{ce}. \text{ Consequently, } E_{\text{max}}^{ce} <_c =^{ce}. \]

Proof.

Suppose \(f : E_{\text{min}}^{ce} \leq_c E_{\text{max}}^{ce} \). By saturating downwards, assume without loss \(f \) is well-defined. For each \(n \), let \(W_e_n = [n, \infty) \), a monotone decreasing sequence. By monotonicity lemma, \(W_{f(e_n)} \) is therefore also monotone decreasing. Moreover, since \(\min(W_{e_n}) \) are distinct, it follows that \(\max(W_{f(e_n)}) \) are distinct, impossible.
Same median relation, E_{med}^{ce}

\[e \ E_{\text{med}}^{ce} \ e' \iff \text{median}(W_e) = \text{median}(W_{e'}) \]

Theorem

E_{med}^{ce} lies between E_{max}^{ce} and E_0^{ce} in the reducibility hierarchy.

Proof.

$E_{\text{max}}^{ce} \leq_c E_{\text{med}}^{ce}$ by saturating downwards.

$E_{\text{med}}^{ce} \leq_c E_0^{ce}$ via f, where as long as $r_s = \text{median}(W_{e,s})$ doesn’t change, $W_f(e)$ enumerates multiples of r_s into $W_f(e)$. When r_s does change, $W_f(e)$ saturates below current max and now enumerates multiples of new r_s. This reduces, since if W_e has median r, then this stabilizes, so $W_f(e)$ is eventually $r^\mathbb{N}$.

Equivalence relations on \mathbb{N}, CUNY MAMLS 2012

Joel David Hamkins, New York
Median incomparable with Min and equality

Theorem

\[E_{\text{med}}^{ce} \text{ is incomparable with both } E_{\text{min}}^{ce} \text{ and } =^{ce}. \]

Proof.

Suppose \(f : E_{\text{med}} \leq_c =^{ce} \). So \(f \) well-defined, hence monotone. Consider \(W_{e_1} = \{1\} \), \(W_{e_2} = \{1, 2\} \), \(W_{e_3} = \{0, 1, 2\} \). By monotonicity, \(W_{f(e_1)} \subsetneq W_{f(e_2)} \subsetneq W_{f(e_3)} \), but \(\text{med}(W_{e_1}) = \text{med}(W_{e_3}) \), contradiction.

Suppose \(f : E_{\text{min}} \leq_c E_{\text{med}}^{ce} \). Fix \(W_{e_0} \) nonempty with \(W_{f(e_0)} \) finite median \(r_0 \). Find \(\text{min}(W_{e_0}) < \text{min}(W_{e_1}) < \text{min}(W_{e_2}) < \cdots < \text{min}(W_{e_N}) \), \(N = 2r_0 + 2 \), with \(r_i = \text{med}(W_{f(e_i)}) \) finite. Consider program \(e \), which enumerates \(\text{min}(W_{e_N}) \) into \(W_e \) until \(\text{med}(W_{f(e),s_N}) = r_N \). Now enumerate \(\text{min}(W_{e_{N-1}}) \) into \(W_e \), and so on. After \(N \) iterations, \(\text{med}(W_{f(e)}) = \text{med}(W_{f(e_0)}) = r_0 \), but \(W_{f(e)} \) has \(\geq N = 2r_0 + 2 \) elements, impossible.
Reducibility diagram

This diagram is complete for these relations.
Generalization to other orders

For computable linear ordering L and $W \subseteq L$, consider Dedekind cut

$$\text{cut}_L(W) = \{ l \in L \mid \exists w \in W(l <_L w) \}.$$

Same cut relation

$$e \ E_L \ e' \iff \text{cut}_L(W_e) = \text{cut}_L(W_{e'}).$$

Same hull relation

$$e \ H_L \ e' \iff W_e, W_{e'} \text{ have same convex hull in } L$$

- Both E_L and H_L reduce to \equiv^{ce} by saturating W_e.
- Both E_L and E_L^* computably reduce to H_L.
- Note $E_{\text{max}} = E_{\omega}$ and $E_{\text{min}} = E_{\omega^*}$.
- \equiv^{ce} is bireducible with $E_{\mathbb{Q}}$, via $e \mapsto$ Dedekind cut in \mathbb{Q} of the real number $\sum_{n \in W_e} 1/3^{n+1}$.
Complete embeddings

Let \overline{L} be the c.e. cuts of L. Define \emph{computably embeddable} $\overline{L}_1 \hookrightarrow_c \overline{L}_2$, if there is computable $\alpha : \mathbb{N} \to \mathbb{N}$ such that

$$\text{cut}^L_1(\mathcal{W}_e) < \text{cut}^L_1(\mathcal{W}_e') \iff \text{cut}^L_2(\mathcal{W}_{\alpha(e)}) < \text{cut}^L_2(\mathcal{W}_{\alpha(e')}).$$

Theorem

*If L_1, L_2 computable linear orders, then $E_{L_1} \leq E_{L_2}$ iff $\overline{L}_1 \hookrightarrow_c \overline{L}_2$.***

Proof.

If $f : E_{L_1} \leq E_{L_2}$, wlog f is well-defined. By monotonicity, f preserves cut order, so f witnesses $\overline{L}_1 \hookrightarrow_c \overline{L}_2$.

If $\alpha : \overline{L}_1 \hookrightarrow_c \overline{L}_2$, let $\mathcal{W}_{f(e)} = \text{cut}^L_2(\mathcal{W}_{\alpha(e)})$, which is a reduction of E_{L_1} to E_{L_2}.

The result generalizes to partial orders.
Cuts and Hulls in computable ordinals

Figure: Diagram showing the cut and hull relations for computable ordinals α and their reverse orderings α^*. In 2017 this will be the first diagram to land on Gliese 581g.
Enumerable relations

A major focus for Borel theory: countable Borel equivalence relations.

The Lusin/Novikov theorem: every countable Borel equivalence relation has a uniform Borel enumeration of each class.

The Feldman/Moore argument uses this to show every countable Borel equivalence relation is the orbit relation of a Borel action of a countable group.

We develop the computable analogue of this theory.
Computable analogue of Lusin/Novikov

An equivalence relation E on c.e. sets is \textit{enumerable in the indices} if there is computable $\alpha : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with

$$W_e \ E \ W_{e'} \iff \exists n \ W_\alpha(n,e) = W_{e'}.$$

This is the computable analogue of the Lusin/Novikov property for countable Borel equivalence relations.

For example, E_0^{ce} has this property, since let $W_\alpha(n,e)$ be W_e modified to have n^{th} finite set at bottom. As n varies, $W_\alpha(e,n)$ enumerates all finite modifications of W_e, and so α witnesses that E_0^{ce} is enumerable in the indices.
Enumerable relations and orbit equivalence relations

Enumerable relations reduce to E_{set}

Theorem

If E^{ce} is enumerable in the indices, then $E^{ce} \leq E^{ce}_{\text{set}}$.

Proof.

Simply map program e to a program for a subset of $\mathbb{N} \times \mathbb{N}$ which puts $W_\alpha(n,e)$ on the n^{th} column.

Of course E^{ce}_{set} is not itself enumerable, since enumerable relations are easily seen to be Σ^0_3, whereas E^{ce}_{set} is Π^0_3 complete.
Computable group actions

The action of a computable group Γ acting on the c.e. sets is *computable in the indices* if there is computable $\alpha : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with $W_{\alpha(\gamma,e)} = \gamma W_e$.

For example, left translation action of Γ on c.e. subsets of Γ.

Induced orbit equivalence relation

$$e \ E_{\Gamma}^{ce} e' \iff \exists \gamma \in \Gamma \ W_{e'} = \gamma W_e.$$

One would prefer an analogue of Feldman/Moore, saying that every enumerable relation is the orbit relation of an action computable in the indices.

Unfortunately, this is not the case.
Countereamples to orbit equivalence relations

Theorem

If E is an equivalence relation on c.e. sets and $|[W_e]_E| \geq 2$ for some e with $W_e \subseteq W_{e'}$ for all $e' E^{ce} e$, then E is not an orbit equivalence of any action computable in the indices.

Proof.

Suppose E is orbit equivalence of computable action of Γ, witnessed by α. For each γ, the map $e \mapsto \alpha(\gamma, e)$ is well-defined on c.e. sets, hence monotone. Choose $e' E^{ce} e$ with $W_e \subset W_{e'}$ and $\gamma W_{e'} = W_e$. So $\gamma W_e \subseteq \gamma W_{e'} = W_e$, so by hypothesis, $\gamma W_e = W_e$ also, a contradiction.
E_0^{ce} is not an orbit equivalence

Corollary

E_0^{ce} is not induced by any action which is computable in the indices.

Proof.

The empty set $W_e = \emptyset$ is minimal in its E_0 equivalence class, which consists of all the finite sets.

Nevertheless, we don’t know:

Question

Is E_0^{ce} computably bireducible with an orbit relation induced by an action which is computable in the indices?
Universal orbit equivalence

Like their Borel counterparts, the class of orbit relations induced by actions computable in the indices exhibits a universal element, which gives hope that the structure of the orbit equivalence relations on c.e. sets will mirror the countable Borel equivalence relations.

Theorem

There is E_{∞}^{ce} induced by an action computable in the indices, and $E_\Gamma \leq E_{\infty}^{ce}$ whenever E_Γ arises from an action computable in the indices.

The proof uses the free group on ω generators to simulate all other actions.
The enumerable relations, with orbit equivalence relations.
Isomorphism of c.e. structures

Definition

Let \equiv_{bin}^{ce} denote the isomorphism relation on the codes for c.e. binary relations. That is, let $e \equiv_{\text{bin}}^{ce} e'$ if and only if W_e and $W_{e'}$, thought of as binary relations on \mathbb{N}, are isomorphic.

We remark that in order to analyze the isomorphism on arbitrary \mathcal{L}-structures, it is enough to consider just the binary relations, since if \mathcal{L} is a computable language then the isomorphism relation $\equiv_{\mathcal{L}}^{ce}$ on the c.e. \mathcal{L}-structures is computably reducible to \equiv_{bin}^{ce}.
What is isomorphism on c.e. graphs?

Two different ways to treat isomorphism of c.e. structures.

- Could restrict \cong_{bin}^{ce} to indices for W_e that are the right kind of structure. (Problem: these relations are not total)
- Or, identify structures as c.e. substructures of fixed universal structure.

For example, fix a computable copy Γ of the countable random graph, and we define $\cong_{\text{graph}}^{ce}$ to be the isomorphism relation on the c.e. subsets of Γ.

Similarly, we consider c.e. linear orders as subsets of a copy of \mathbb{Q}, and c.e. trees as the downward closure of c.e. subsets of $\mathbb{N}<\mathbb{N}$.

In some cases, the two approaches are equivalent.
Isomorphisms of c.e. graphs, linear orders, trees

Theorem

Isomorphism of binary relations \(\cong_{\text{bin}}^{ce} \) *is computably bireducible with each of isomorphisms of graphs, linear orders and trees.*

\[\cong_{\text{graph}}^{ce} \quad \cong_{\text{lo}}^{ce} \quad \cong_{\text{tree}}^{ce} \]

The classical reductions go through easily.

Part of the reason it works is that these classical reductions use only the *positive* information about the structures; they need to know when two elements are related, but not instances of non-relation.
Same set is strictly below \equiv_{bin}

The isomorphism relation of binary relations \equiv_{bin}^{ce} is very high in our hierarchy. For example,

Theorem

E_{set}^{ce} lies properly below \equiv_{bin}^{ce}.

Proof.

To reduce E_{set}^{ce} to \equiv_{bin}^{ce}, let $W_{f(e)}$ be a code for W_e as a hereditarily countable set. In other words, $W_{f(e)}$ is a well-founded tree coding the transitive closure of $\{W_e\}$.

The absence of any reverse reduction follows from complexity, since E_{set}^{ce} is Π_4^0.

Equivalence relations on \mathbb{N}, CUNY MAMLS 2012

Joel David Hamkins, New York
Isomorphism of c.e. groups

Isomorphism of c.e. groups admits several coding methods.

We could consider indices e such that W_e, as a subset of $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, is the graph of a group operation, and then define $\cong_{\text{group}}^{ce}$ to be the restriction of the isomorphism relation \cong_{tern}^{ce} on the c.e. ternary relations to this set.

Alternatively we can code a group by a presentation, a set of words in F_ω, thinking of the group as the corresponding quotient. Thus, $e \cong_{\text{pres}}^{ce} e'$ iff W_e and $W_{e'}$, as sets of relations in F_ω, determine isomorphic quotient groups.

Thus, the classification problem for groups splits into two separate problems: for computable group operations, and for computably presented groups.
Two versions of group isomorphism

Theorem

\[\simeq_{\text{group}} \leq \simeq_{\text{bin}} \leq \simeq_{\text{pres}}.\]

We suspect that neither reduction is reversible.
Computable isomorphisms

Consider now the case of *computable* isomorphisms, rather than arbitrary isomorphisms.

\[e \simeq_{\text{ce}}^{\text{bin}} e' \text{ iff } W_e, W_{e'}, \text{ as binary relations, are isomorphic by a computable bijection.} \]

It happens that most of the previous reductions, such as from binary relations to graphs, go through for computable isomorphisms.

Thus, the computable isomorphism relation on the class of c.e. binary relations, graphs, linear orders and trees are all computably bireducible to each other.
Computable isomorphisms

But they are lower in the hierarchy:

Theorem

\[\sim_{\text{bin}}^{\text{ce}} \text{ lies properly below } E_{\text{set}}^{\text{ce}}. \]

Proof.

For the reduction, the basic idea is to reduce to \(E_{\text{set}} \) by making a subset of \(\mathbb{N} \times \mathbb{N} \) whose slices enumerate all computable copies of the original structure (plus all finite sets).

Conversely, \(E_{\text{set}}^{\text{ce}} \) is not reducible to \(\sim_{\text{bin}}^{\text{ce}} \) because \(\sim_{\text{bin}}^{\text{ce}} \) is \(\Sigma^0_3 \), but \(E_{\text{set}}^{\text{ce}} \) has a \(\Pi^0_3 \)-complete equivalence class.

Isomorphisms and computable isomorphisms
Relations from computability theory

Consider now the principal equivalence relations of computability theory, viewed as equivalence relations on the c.e. sets.

- Turing equivalence, $=_T$
- Many-one equivalence, $=_m$
- One-equivalence, $=_1$
Theorem

\(\equiv^{ce}\) lies properly below each of \(\equiv_T^{ce}\), \(\equiv_1^{ce}\), and \(\equiv_m^{ce}\) in the computable reducibility hierarchy.

Proof.

Reduce to all at once. Fix strong antichain: c.e. sets \(A_i\) with \(A_i \not\leq_T \bigoplus_{j \neq i} A_j\). Let \(W_f(e) \subseteq \mathbb{N} \times \mathbb{N}\) have \(k\)th column \(A_{n_k}\), when \(n_k\) is \(k\)th element enumerated into \(W_e\).

If \(W_e = W_{e'}\), then \(W_f(e) \equiv_1 W_f(e')\), by suitable permutation of columns. Conversely, if \(W_e \neq W_{e'}\), then \(W_f(e) \not\equiv_T W_f(e')\), for if \(i \in W_e \setminus W_{e'}\), then \(A_i \leq_T W_f(e)\) but not \(W_f(e')\).

None of the relations reduces to \(\equiv^{ce}\), because they are \(\Sigma^0_3\)-complete, whilst \(\equiv^{ce}\) is \(\Pi^0_2\).
Theorem

\(=_{ce}^{ce} \) is computably reducible to \(=_{ce}^{1} \).

Proof.

Simply let \(W_{f(e)} = W_{e} \times \mathbb{N} \). If \(\phi : \mathbb{N} \to \mathbb{N} \) many-one reduces \(W_{e} \) to \(W_{e'} \), then \((m, n) \mapsto (\phi(m), \langle m, n \rangle) \) one-one reduces \(W_{f(e)} \) to \(W_{f(e')} \). Converse is similar.

Theorem

\(=_{ce}^{1} \) is computably reducible to \(\simeq_{ce}^{bin} \).

Proof.

This is because \(=_{ce}^{1} \) is the computable isomorphism relation on the set of c.e. unary relations. So \(=_{ce}^{1} \leq \simeq_{ce}^{bin} \) via \(f \) where \(W_{f(e)} \) codes the graph on \(\mathbb{N} \cup \{\star\} \) where \(\star \to n \) iff \(n \in W_{e} \).
Degree relations

\[\approx^{\text{ce}} \quad \sim^{\text{bin}} \]

\[=^{\text{ce}} \quad =^{\text{1}} \quad =^{\text{ce}} \quad =^{\text{ce}} \quad =^{\text{ce}} \text{1} \quad =^{\text{ce}} \text{m} \quad =^{\text{ce}} \text{bin} \]
Difference hierarchy

We have extended the analysis to the difference hierarchy.

For e_1, \ldots, e_n, the corresponding n-c.e. set is

$$W_{(e_i)} = (W_{e_1} \setminus W_{e_2}) \cup (W_{e_3} \setminus W_{e_4}) \cup \cdots \setminus \cup W_{e_n}.$$

Every equivalence relation E on n-c.e. sets has corresponding relation

$$(e_i) \ E^{n-ce} (f_i) \iff W_{(e_i)} \ E \ W_{(f_i)}$$

It is easy to see that $E^{n-ce} \leq E^{n+1-ce}$. Just fix e with $W_e = \emptyset$, and use $(e_1, \ldots, e_n) \mapsto (e_1, \ldots, e_n, e)$.

Relations in the difference hierarchy

- \(E_0^{ce} \)
- \(E_3^{ce} \)
- \(\leq \omega^{ce} \)
- \(\leq n^{ce} \)
- \(\leq dce \)
- \(\leq ce \)

Introduction, Equivalences of c.e. sets
Below equality, \(=^{ce}\)
Classifications of c.e. structures
Computability relations
Thank you.

Joel David Hamkins
The City University of New York
http://jdh.hamkins.org
http://cantorsattic.info