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Pointwise definability Forcing Pointwise Definability

Introduction and Folklore

The math tea argument

Heard at a good math tea anywhere:

“There must be real numbers we cannot describe or
define, because there are uncountably many real
numbers, but only countably many definitions.”

Does this argument withstand scrutiny?

“I can describe any number. Let me show you: you tell
me a number, and I’ll tell you a description of it.”

–Horatio, age 8
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Introduction and Folklore

Definability

An object is definable in a structureM if it is the unique object r
satisfying some assertionM |= ϕ[r ].

Nothing is definable in 〈R, <〉.
Algebraic reals are definable in 〈R,+, ·,0,1, <〉.
More in 〈R,+, ·,0,1,Z, sin(x),ex , . . .〉.
Even more in 〈Hω2 ,∈〉 or in 〈Vω+5,∈〉.
〈Vω+ω,∈〉 . . .

In trying to define more objects, we are inevitably drawn to
expand the language and to extend the structure.
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Introduction and Folklore

Cheating

It would be a kind of cheating to define an object r in a structure
or language that was itself not definable:

such as a constant with value r ,
a unary relation holding only at r ,
or to define objects in 〈Vα,∈〉 when α is not itself definable.
(This amounts to using α as a parameter.)

We are thereby pushed:

to allow only countable languages, and
to consider only structures that are themselves definable
with respect to the set-theoretic background 〈V ,∈〉.
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Introduction and Folklore

In a fixed structure

In a fixed structureM in a countable language, the math tea
argument is fine: there are only countably many definitions, but
uncountably many reals.

We simply associate each definable object r with a formula ψr
that defines it. With access to such a definability map

r 7→ ψr ,

we may diagonalize against it to produce a real that is not
definable.
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Introduction and Folklore

Meta-mathematical obtacle

When defining reals r over 〈V ,∈〉, however, a subtle
meta-mathematical obstacle arises:

The property of being definable in 〈V ,∈〉 is not first order
expressible in set theory.

As in Tarski’s theorem on the non-definability of truth, in general
we may have no way to express “x is defined by formula ψ”.

But the obstacle is less severe than in Tarski’s theorem, since
some models of ZFC do have such a definition.
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Introduction and Folklore

Pointwise definability
The Theme

To what extent is it possible that every real or indeed, every
object in the set-theoretic universe, is definable without
parameters?

Definition

A structureM is pointwise definable if every element ofM is
definable without parameters inM.

In such models, all objects are discernible; every object
satisfies a distinct principal complete 1-type. Being pointwise
definable is not first-order expressible, since it is not preserved
by elementary extensions. Pointwise definable models (in
countable language) are countable.
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Introduction and Folklore

The main theorem will be that every countable model M of ZFC,
and indeed, of GBC, has an extension M[G] that is pointwise
definable. Every set and class is definable in M[G] without
parameters.
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Introduction and Folklore

Easy folklore observations
Theorem

If ZFC is consistent, then there are continuum many
non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any M |= ZFC + V = HOD. There are definable
Skolem functions. The collection of definable elements of M is
closed under the these Skolem functions, hence elementary,
hence pointwise definable. So every completion of
ZFC + V = HOD has a pointwise definable model. By
Gödel-Rosser, there are continuum many completions.

Note that pointwise definable models with same theory are
isomorphic. So these are exactly all the pointwise definable models
of ZFC.
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Introduction and Folklore

Characterization of pointwise definability
That idea is fully general.

Observation

The following are equivalent:
1 M is a pointwise definable model of ZFC.
2 M consists of the definable elements of a model of

ZFC + V = HOD.
3 M is a prime model of ZFC + V = HOD.

Pointwise definability is a strong form of V = HOD.

We might introduce the notation V = D or V = HD, but we
don’t want to suggest that pointwise definability is first-order
expressible.
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Introduction and Folklore

Transitive pointwise definable models
Theorem

If there is a transitive model of ZFC, then there are continuum
many transitive pointwise-definable models of ZFC.

Proof.

Fix transitive N |= ZFC + V = HOD. The definable elements of
N form an elementary substructure, whose Mostowski collapse
is pointwise definable.

For continuum many such models, force to add a Cohen real
N[c], and then force V = HOD in N[c][G] by coding into the
GCH pattern, and make c definable. The definable elements of
N[c][G] include c and have pointwise definable Mostowski
collapse. There is a perfect set of such c.

Pointwise definable models of set theory, Bristol 2012 Joel David Hamkins, New York



Pointwise definability Forcing Pointwise Definability

Introduction and Folklore

Minimal Transitive Model

Theorem

The minimal transitive model of ZFC is pointwise definable.

Proof.

If Lα is the minimal transitive model of ZFC, then by
condensation the definable hull of ∅ in Lα collapses to Lα, and
so every element of Lα is definable in Lα.

The argument generalizes to show that if Lβ is pointwise
definable, then the next β̂ > β with Lβ̂ |= ZFC, if it exists, is also
pointwise definable. And more...
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Introduction and Folklore

Pointwise definable Lα’s

Theorem

If there is an uncountable transitive model of ZF, then there are
arbitrarily large α < ωL

1 for which Lα is a pointwise definable
model of ZFC.

Proof.

Actual hypothesis: there are unboundedly many α < ωL
1 for

which Lα |= ZFC. Every real of L is definable in some countable
Lξ, since otherwise consider the least counterexample. Every
ξ < ωL

1 is definable in Lα |= ZFC, where α is the (ξ + 1)th ordinal
for which Lα |= ZFC, because this Lα sees exactly ξ smaller α.
So every real is in the definable hull of some Lα |= ZFC, whose
collapse is pointwise definable.
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Introduction and Folklore

Every real is in a pointwise definable model
Theorem

If there is an uncountable transitive model of ZF, then every real
is an element of a pointwise definable ω-standard model of
ZFC.

Proof.

The previous theorem shows that the conclusion is true in L.
The statement of the conclusion has complexity Π1

2. So it is true
in V .

The models can be well-founded as high in the countable
ordinals as desired. If a real z codes α, then any ω-model
containing z will be well-founded at least to α.
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Extending arbitrary transitive models

Theorem

Every countable transitive model M of set theory has an
end-extension to a (possibly nonstandard) model
M+ |= ZFC + V = L, such that M+ is pointwise definable.

Proof.

Code M by a real. By the previous argument, this real is in a
pointwise definable model M+ of V = L. Note that this real
decodes to M inside M+, and M+ is well-founded at least to the
height M.
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Introduction and Folklore

Curious instances
These results admit curious instances when applied to
nonconstructible reals.

Force to collapse ωV
1 in V [g]. By the previous, there is an

ω-standard model M |= ZFC + V = L in which g exists and is
definable. So M is well-founded beyond ωV

1 , but thinks g is
constructible at some stage α̃, even though we know g /∈ L.
The model M thinks V = L and ωV

1 is countable.

In particular, if 0] exists, then there is a pointwise definable
model M of ZFC + V = L, well-founded high in the countable
ordinals (e.g. past many indiscernibles), such that 0] ∈ M.

Thus, true 0] can exist unrecognized but definable in a model of
ZFC + V = L that is well-founded far beyond the true ωL

1! (Can
even arrange that M ≡ LV .)
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The range of possibility
(i) There is no uniform definition of class of definable elements.

Specifically, there is no formula df(x) in the language of set
theory that is satisfied in any model M |= ZFC exactly by the
definable elements. To see this, consider ∀x df (x) in a
pointwise definable model and elementary extensions.

(ii) In some models, the class of definable elements is
nevertheless definable.

For example, in a pointwise definable model.

(iii) In others, the definable elements do not form a class.

Consider any nontrivial ultrapower of a pointwise definable
model.
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More possibilities

(iv) The definable elements may be a class, but not r 7→ ψr .

This is true in a pointwise definable model.

(v) The definable elements can be a set, along with r 7→ ψr .

True in V if there is γ with Vγ ≺ V .

(vi) No model has a definable definability map r 7→ ψr .

Diagonalize against r 7→ ψr .

The surviving content of the math-tea argument: in any model
with r 7→ ψr , the definable reals do not exhaust all the reals.
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ZFC Models, Simpson’s Theorem and extensions to GBC

Pointwise definable ZFC extensions

Consider now the positive results, where we (Hamkins,
Linetsky, Reitz) obtain pointwise definability not by discarding
non-definable elements, but by preserving them to a pointwise
definable extension.

Theorem

Every countable model of ZFC has a pointwise definable class
forcing extension.

An earlier independent version of this theorem was mentioned
by Ali Enayat.
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ZFC Models, Simpson’s Theorem and extensions to GBC

Paris models

Enayat was focused on the Paris models, models of ZF in which
every ordinal is definable without parameters.

Theorem (Enayat)

If L has an uncountable transitive model of ZF, then there are
Paris models of arbitrarily large cardinality.

These are very large models, with countable height, where
every ordinal is definable without parameters. The proof uses
model-theoretic methods and Lω1,ω logic, such as Morley’s
two-cardinal theorem, and a result of Harvey Friedman showing
that every model M |= ZF has extensions with same ordinals of
size iα, where α = ORDM .
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ZFC Models, Simpson’s Theorem and extensions to GBC

Simpson’s Theorem
Our proof uses a PA result of Simpson, applied to ZFC.

Theorem (Simpson 1974)

Let 〈M,∈〉 be a countable model of ZFC. Then, there is an
M-generic class U ⊆ M such that 〈M,∈,U〉 |= ZFC(U) and
every element of M is definable in 〈M,∈,U〉.

Proof.

Use Q = Add(ORD,1). Enumerate sets of ordinals of M as
〈an | n < ω〉. Enumerate dense classes 〈Dn | n < ω〉, where Dn
is defined by ϕn(x ,ai)i<n. Define descending pn so that pn+1 is
the shortest extension of pn in Dn, followed by a block listing an
and end-marker. Resulting filter U ⊂ ORD is M-generic, but
every an is definable in 〈M,∈,U〉.
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ZFC Models, Simpson’s Theorem and extensions to GBC

Pointwise Definable ZFC extensions

Theorem

Every countable model of ZFC has a pointwise definable class
forcing extension.

Proof.

Suppose M |= ZFC is countable. First get U as in Simpson’s
theorem, so M[U] |= ZFC(U) and 〈M,∈,U〉 is pointwise
definable. Now code U into the GCH pattern (or whatever
coding), and also force V = HOD. In final model M[G], a class
forcing extension, M and U are definable without parameters,
so every ordinal is definable, so M[G] is pointwise
definable.
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ZFC Models, Simpson’s Theorem and extensions to GBC

Preserving large cardinals

The proof accommodates basically any large cardinal notion. In
moving from M to M[U] via Simpson’s theorem, we performed
class forcing to add a Cohen generic class of ordinals, which
adds no new sets. And then we performed coding forcing and
V = HOD forcing to M[G], which can be done so as to preserve
large cardinals.
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Gödel-Bernays set theory
Gödel-Bernays set theory, or von Neumann-Gödel-Bernays set
theory, is a second-order set theory that is conservative over
ZFC.

Models have form 〈M,S,∈〉, where 〈M,∈〉 |= ZFC and
S ⊆ P(M) is a family of classes, such that instances of
Replacement and Separation are allowed to use finitely many
class parameters (but not to quantify over classes). Plus, we
have a global choice class.

GBC is conservative over ZFC since every ZFC model 〈M,∈〉
can be extended to a GBC model 〈M,S,∈〉 by adding a generic
global well-ordering and letting S consist of the definable (with
set parameters) classes of M relative to it.

Forcing works fine over GBC models.
Pointwise definable models of set theory, Bristol 2012 Joel David Hamkins, New York



Pointwise definability Forcing Pointwise Definability

ZFC Models, Simpson’s Theorem and extensions to GBC

Main GBC theorem

Theorem

Every countable model of Gödel-Bernays set theory has a
pointwise definable extension, where every set and class is
first-order definable without parameters.

Thus, even when we augment our ZFC model with a large
family of non-definable classes, we may nevertheless make
those classes (and all sets) definable in an extension of the
model.

In the end, we have a pure ZFC model, while retaining all
original classes, and making them all definable without
parameters.
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Special case: principal models

A GBC model 〈M,S,∈〉 is principal if there is X ∈ S such that
every class in S is definable in 〈M,∈,X 〉.

Natural examples include the ZFC definability extensions; and
the principal GBC models are closed under class forcing.

A non-example is obtained by successive forcing extensions
M,M[G0],M[G0,G1], · · · , whose union is non-principal.

No model 〈M,S,∈〉 of Kelly-Morse set theory is principal as a
GBC model, since KM proves the existence of a truth predicate
relative to any one class.

For example, if κ is inaccessible, then 〈Vκ,Vκ+1,∈〉 is
non-principal.

Pointwise definable models of set theory, Bristol 2012 Joel David Hamkins, New York



Pointwise definability Forcing Pointwise Definability

ZFC Models, Simpson’s Theorem and extensions to GBC

Pointwise definability for principle GBC models

Theorem

Every countable principal GBC model has a class forcing
extension that is pointwise definable, in which every set and
class is first-order definable without parameters.

Proof.

Suppose that 〈M,S,∈〉 is a principal GBC model with principal
class X ∈ S. By Simpson’s argument, add a generic class U
such that every set is definable from U. Now force to code U
and X into GCH pattern, as well as forcing V = HOD. Get
forcing extension M[G] in which X and U and hence M are
definable. Thus, M[G] is pointwise definable, and every class of
S is definable in M[G].
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Extending to a Principal GBC Model

In order to achieve the full GBC theorem, it suffices to show that
every GBC model 〈M,S,∈〉 can be extended to a principal
model.

The initial idea was to use meta-class forcing to code up all the
classes in one class.

For example, if κ is inaccessible, then 〈Vκ,Vκ+1,∈〉 is extended
to a principal GBC model Vκ[G] by forcing with Coll(κ,2κ).

More generally, one can do something similar over KM models,
adding a generic collapse class.

But this forcing idea does not seem to go through for GBC
models...
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Extending to a Principal GBC Model
Nevertheless...

Theorem (Kossak, Schmerl, indep. Friedman)

Every countable GBC modelM = 〈M,S,∈〉 has an extension
to a principal GBC modelM[Y ] = 〈M[Y ],S[Y ],∈〉.

Proof.

Kossak, Schmerl proved for PA, but argument extends to GBC.
M[Y ] is not a forcing extension. Enumerate the classes of
ordinals as 〈An | n < ω〉. Build descending sequence
Q0 ⊃ Q1 ⊃ Q2 ⊃ · · · with each Qn ⊆ 2<ORD a perfect tree.
Each Qn ∼= Add(ORD,1). Build Qn+1 so that any branch
through Qn is Σn-generic for Qn and also codes An. Lengthen
stem so that there is common branch Y ⊆

⋂
n Qn. Thus,

M[Y ] |= ZFC(Y ), and every An is definable.
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Pointwise definable GBC extensions

Putting it together...

Theorem

Every countable model of Gödel-Bernays set theory has a
pointwise definable extension, where every set and class is
first-order definable without parameters.

Proof.

IfM is a countable GBC model, we may first extend it toM[Y ]
that is principal, and then apply the special case of principal
GBC models to find a forcing extensionM[Y ][G] in which every
set and class is definable without parameters.
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Summary Conclusion
Returning to the math-tea argument. . .

In seeking to define more and more reals, we are pushed
to enlarge our context by considering larger structures or
higher-order descriptions.
In any fixed such context, there will be only countably
many definable objects.
The full context of definability-in-V is not actually
expressible,
and for all we know, every object in the universe is uniquely
describable.
But even if not, we might enlarge our universe to make this
true.

And so ultimately, Horatio is right, but possibly only in an
extension of the universe...
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Thank you.

Joel David Hamkins
The City University of New York

http://jdh.hamkins.org
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