GRAPH COLORING & CHROMATIC NUMBERS

00-0

CONTACT J. HAMKINS JHAMKINS@GC. CUNY. EDU WITH OWESTIONS.

COLOR EACH VERTEX SO THAT CONNECTED VERTICES HAVE DIFFERENT COLORS.

TRY TO USE THE FEWEST NUMBER OF COLORS - THIS IS THE CHROMATIC NUMBER. WHAT IS MY CHROMATIC NUMBER?

HOW MANY COLORS

DID YOU USE?

MY GRAPH:

GRAPH BY

COLORED BY _______

USING ___ COLORS.

COLORED BY ME

USING _____ COLORS.

MAP COLORING

COLOR THE COUNTRIES ON THIS
MAP SO THAT ADJACENT
COUNTRIES HAVE DIFFERENT
COLORS.

TRY TO USE THE FEWEST NUMBER OF COLORS. REMARKABLY, FOUR COLORS ALWAYS SUFFICE!

MAP BY____.

COLORED BY

USING ___ COLORS.

COLORED BY ME

USING ____ COLORS.

EULERIAN PATHS & CIRCUITS

DRAW THESE SHAPES WITHOUT
LIFTING YOUR PENCIL AND
WITHOUT RETRACING ANY LINE.

A CIRCUIT STARTS AND ENDS IN THE SAME PLACE.

A PATH CAN START AND END IN DIFFERENT PLACES.

ONLY SOME OF THESE GRAPHS
HAVE AN EULERIAN PATH OR CIRCUIT.

CIRCLE THE IMPOSSIBLE GRAPHS.

EVERY TIME YOU ENTER A NODE, YOU LEAVE ON A FRESH LINE, SO:
CIRCUIT: EVERY NODE HAS EVEN DEGREE
OATH: EVERY NODE EXCEPT START/END

THE SEVEN BRIDGES OF . KÖNIGSBERG

IS IT POSSIBLE TO TOUR

THE CITY, CROSSING

EACH BRIDGE EXACTLY

ONCE?

MATHEMATICIANS

REPRESENT THE KÖNIGSBERG

BRIDGE PROBLEM WITH AN

ABSTRACT GRAPH:

1S THERE AN EULERIAN
PATH? EVERY NODE
HAS ODD DEGREE.