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Abstract. While ∧,∨,¬ form a complete set of connectives for classical
propositional logic, this does not hold for Łukasiewicz’s three-valued propo-
sitional logic, nor its generalization to n-valued logic. We define a unary con-
nective r so that ∧,∨,¬, r form a complete set of connectives for n-valued
Łukasiewicz logic. We discuss generalizations of this to infinitary logics. If we
allow infinite conjunctions and disjunctions of arbitrary size, this provides a
complete set of connectives for real-valued Łukasiewicz logic. Restricting to
countable conjunctions and disjunctions, the truth functions expressible with
these connectives are precisely the Borel functions.

1. Introduction

In [3, 4] Łukasiewicz defined a three-valued propositional logic. His logic extends
classical propositional logic, adding a truth value intermediate between truth and
falsity. This third truth value, which he interpreted as “possibility”,1 was introduced
to address some (perceived) shortcomings in Aristotelian logic. In this article, we
set aside the philosophical questions surrounding multi-valued logic to look at some
of their algebraic properties. We will investigate what is necessary to extend the
original connectives of Łukasiewicz’s logic to be able to express any truth function
as a logical formula.

The definitions of Łukasiewicz’s connectives can be found in in Figure 1. He
later generalized the definition of these connectives to define ∧, ∨, ¬,⇒, and⇔ for
n-valued logic, with n any integer > 2. The connectives are defined to be as close
as possible to the classical, two-valued connectives. Indeed, when restricting their
input to classical truth values, these connectives are precisely their classical coun-
terparts. As a consequence of this, not every truth function {0, 1

2 , 1}
` → {0, 1

2 , 1}
can be represented as a formula in Łukasiewicz’s logic; any formula must send clas-
sical truth values to classical truth values. The same result holds for the n-valued
logics.

This stands in contrast to classical propositional logic, which is well-known to
have a complete set of connectives. Every truth function f : {0, 1}` → {0, 1} can
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1Note that although Łukasiewicz was a contemporary of Lewis, he developed his three-valued

logic before Lewis’s work on modal logic had the influence it enjoys today. In particular, Lewis’s
and Langford’s Symbolic Logic [2] would not be published for another decade.
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Figure 1. Connectives for Łukasiewicz’s three-valued logic.

∧ 1 ½ 0
1 1 ½ 0
½ ½ ½ 0
0 0 0 0

∨ 1 ½ 0
1 1 1 1
½ 1 ½ ½
0 1 ½ 0

⇒ 1 ½ 0
1 1 ½ 0
½ 1 1 ½
0 1 1 1

⇔ 1 ½ 0
1 1 ½ 0
½ ½ 1 ½
0 0 ½ 1

¬
1 0
½ ½
0 1

be expressed by a propositional formula in disjunctive normal form. Moreover, as
conjunction, disjunction, and negation are expressible in terms of nand—a ↑ b =
¬(a ∧ b)—every classical truth function is expressible as a formula using a single
connective.

The main result of this article is a generalization of this result to n-valued logic.
We will define a unary connective r and see that {↑, r} is a complete set of con-
nectives for n-valued logic. There are also some results for infinitary propositional
logics. Allowing infinite conjunctions and disjunctions of arbitrary size, by a similar
argument can be seen how to produce a complete set of connectives for real-valued
propositional logic. Allowing only countably conjunctions and disjunctions, the
truth functions expressible as a formula with these connectives are precisely the
Borel functions.

2. Notation and definitions

[n] will be used to denote the set {0, 1
n−1 ,

2
n−1 , . . . , 1}.

Definition 1. Łn will denote the generalized Łukasiewicz logic with n many truth
values. That is, truth values for Łn are elements of [n] and the logical connectives
are defined as follows:

• a ∧ b = min(a, b);
• a ∨ b = max(a, b); and
• ¬a = 1− a.

Ł3 is Łukasiewicz’s original three-valued logic. Ł2 is classical propositional logic.

As we are only looking at complete sets of connectives, the question of how to
define implication is not of interest to us. However, it is worth noting that none
of the standard choices of implication for three-valued logic would yield a complete
set of connectives when added to ∧, ∨, and ¬. Kleene [1] defined implication in his
three-valued logic K3 so that a ⇒ b is equivalent to ¬a ∨ b. Thus, no new truth
functions can be represented by adding it. Łukasiewicz’s implication (see Figure 1)
allows the representation of new truth functions—such as the constant 1 function—
but does not suffice to allow all truth functions to be represented. Łukasiewicz’s
⇒ and ⇔ send classical truth values to classical truth values. Thus the argument
of Proposition 3 (that {∧,∨,¬} is not a complete set of connectives for Łn) goes
through using {∧,∨,¬,⇒,⇔} as the set of connectives.
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Definition 2. Let K be a propositional logic with T as its set of truth values. A
function f : T ` → T will be called a K-truth function. If there is a formula ϕ with
connectives from C so that for all ā, f(ā) = ϕ(ā), we say that f is representable as
a K,C-formula. If every K-truth function is representable as a K,C-formula, we
say that C is a complete set of connectives for K.

(Ł2,∧,∨,¬) embeds into the logic (Łn,∧,∨,¬) under the identity map. Further,
if m is even, then (Łm,∧,∨,¬) embeds into (Łn,∧,∨,¬) for all n ≥ m and if m
is odd, then (Łm,∧,∨,¬) embeds into (Łn,∧,∨,¬) for all odd n ≥ m. This is
witnessed by the embedding

fm,n(a) =


a(m−1)
n−1 if a < 1

2

1− (1−a)(m−1)
n−1 if a > 1

2
1
2 if a = 1

2

Proposition 3. {∧,∨,¬} is not complete for Łn.

Proof. Consider ϕ(x̄), a formula in ∧,∨,¬. If ā consists only of 0 and 1, then in Łn,
ϕ(ā) = f2,n(ϕ(ā)) ∈ {0, 1}`. Thus, ϕ cannot represent any truth function which
does not map classical truth values to classical truth values. �

This result generalizes: if C is any set of connectives for Łm and Łn, m < n, so
that (Łm, C) embeds into (Łn, C), then C is not complete for Łn. If we wish to
define complete sets of connectives for Łn, we must avoid this.

Definition 4. For Łn, define the following unary connectives:
• ra = a− 1

n−1 (mod 1). r “rotates” the truth values down by one step.
• da = max(0, a− 1

n−1 ). d moves the truth values down by one step, fixing 0.
• p1 = 1 and pa = 0 for a < 1. p projects the truth values, sending any truth

value less than absolute truth to absolute falsehood.

It is easy to see that if (Łm,∧,∨,¬) embeds into (Łn,∧,∨,¬), then we have
(Łm,∧,∨,¬, p) embeds into (Łn,∧,∨,¬, p). This does not hold, however, for either
r or d. Indeed, for no m < n does (Łm, d, r) embed into (Łn, d, r). Therefore, the
situation of Proposition 3 does not apply here.

From these connectives we can define more connectives. r suffices to define
rotation by any amount: rk rotates the truth values down by k steps. In particular,
r−1 = rn−1 rotates the truth values up by 1 step. Using ¬, we can define dual
connectives for d and p. ua = ¬d¬a moves the truth values up by one step, fixing
1. ba = ¬p¬a projects the truth values up, sending any truth value more than
absolute falsehood to absolute truth.

In addition to finitary generalized Łukasiewicz logics, logics with infinitely many
truth values can also be defined. Łukasiewicz and Tarski [5] were the first to do so.
Again, we will define only conjunction, disjunction, and negation, setting aside the
question of how to define implication.

Definition 5. Łℵ0 will denote the generalized Łukasiewicz logic with countably
many truth values. Its set of truth values is Q ∩ [0, 1]. Łc will denote denote the
logic with c = 2ℵ0 many truth values. Its set of truth values is [0, 1]. For both logics,
the basic logical connectives are defined as in the finitary case: a ∧ b = min(a, b),
a ∨ b = max(a, b), and ¬a = 1− a.
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For any finite n, Łn embeds into Łℵ0 and Łc via the identity map. Thus, as was
the case for finitary generalized Łukasiewicz logic, {∧,∨,¬} is complete for neither
Łℵ0 nor Łc. Further, in order for C to be complete for Łℵ0 or Łc, C must not
respect these embeddings.

We define new unary connectives for these infinitary logics, similar to the ones
for Łn. Unlike with Łn, however, we will need infinitely many new connectives: in
Łn, r generated every possible rotation of [n]. For Łℵ0 and Łc, this clearly cannot
be.

Definition 6. For each x ∈ (0, 1), define the following unary connectives:
• rxa = a− x (mod 1); and
• dxa = max(0, a− x).

Define p as pa = 1 if a = 1 and pa = 0 otherwise. We also define the dual
connectives uxa = ¬dx¬a and ba = ¬p¬a.

3. A complete set of connectives for the finitary case

Let C = {∧,∨,¬, r, d, p}.
Lemma 7. For any ā, there is a formula ϕā(x̄) in C so that ϕā(ā) = 1 and for all
b̄ 6= ā, ϕā(b̄) < 1.

Proof. Let
ϕā(x̄) =

∧
0≤k<n

∧
ai=

k
n−1

rk+1−nxi.

rk+1−nc rotates c up by k steps. Thus, rk+1−nc = 1 iff c = k
n−1 and otherwise

c < 1. This gives that ϕā(ā) = 1 and ϕā(b̄) < 1 for b̄ 6= ā. �

Lemma 8. C is a complete set of connectives for Łn.

Proof. Let g : [n]` → [n] be a truth function. Set

ψ(x̄) =
∨

0≤k<n

∨
g(ā)= k

n−1

dn−1−kpϕā(x̄),

where ϕā is as in the previous lemma. pϕā(x̄) is 1 if x̄ = ā and 0 otherwise. dn−1−k

moves 1 down to k
n−1 , so dn−1−kpϕā(x̄) is k

n−1 if x̄ = ā and 0 otherwise. Therefore,
dn−1−kpϕx̄(x̄) = g(x̄). �

Theorem 9. {↑, r} is a complete set of connectives for Łn, where ↑ is defined as
a ↑ b = ¬(a ∧ b).
Proof. Exactly as in the classical case, ∧, ∨, and ¬ are expressible in terms of ↑.
Thus, by Lemma 8, we have only to see that d and p can be expressed in terms of
∧, ∨, ¬, and r. It is easy to see that da = a ∧ ra; if a > 0, then ra = a− 1

n−1 and
hence a ∧ ra = a− 1

n−1 . Otherwise, if a = 0, then a ∧ ra = 0.
For p, notice that ∧

k<n−1

rka =

{
1

n−1 if a = 1

0 otherwise.

Therefore,

pa = r−1¬

( ∧
k<n−1

rka

)
. �
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Question 10. Is there a single binary connective ? : [n]2 → [n] so that {?} is
complete for Łn?

4. The infinitary case

Let us now consider to what extent these results can be generalized to infinitary
logics. A simple cardinality argument shows that most truth functions in Łℵ0 and Łc

cannot be represented by adding p, rx, and dx. There are continuum many functions
Q∩[0, 1]→ Q∩[0, 1] but only countably many formulae in {∧,∨,¬, p, rx, dx : x ∈ Q∩
(0, 1)}. There are 22ℵ0 functions [0, 1]→ [0, 1], but only continuum many formulae
in {∧,∨,¬, p, rx, dx : x ∈ (0, 1)}. Even if we only look at continuous functions
[0, 1] → [0, 1], of which there are continuum many, a simple induction shows that
only piecewise-linear functions can be represented with these connectives.

It is natural to ask whether allowing infinitary connectives will allow us to rep-
resent more truth functions. That is, if we define

∨
i∈I ai = sup{ai : i ∈ I} and∧

i∈I ai = inf{ai : i ∈ I}, what truth functions can we represent? For this to make
sense, we need the set of truth values for our logic to be closed under suprema and
infima. That is, Łℵ0 is not an adequate logic for this purpose. We will hereon work
solely with Łc. For an infinite cardinal κ, let Łc(κ) denote that conjunctions and
disjunctions of size < κ are allowed. Łc(∞) will denote that conjunctions and dis-
junctions of arbitrarily large size are allowed. Łc(ω1) denotes that only countable
conjunctions and disjunctions are allowed, ω1 being the least uncountable cardinal.
As there are only continuum many truth values in Łc, having conjunctions or dis-
junctions of size > max(c, κ) is redundant if we only look at formulae involving ≤ κ
variables.

We get an analogue of Theorem 9, using essentially the same argument as before.
Let C = {∧,∨,¬, p, rx, dx : x ∈ (0, 1)}.

Theorem 11. Every truth function [0, 1]κ → [0, 1] is representable as a Łc(λ), C-
formula, where λ is the smallest cardinal > max(κ, c). Therefore, any Łc-truth
function, i.e. of arbitrary infinite arity, is representable as a Łc(∞), C-formula.

We will need the following lemma:

Lemma 12. For any open interval (a, b) ⊆ [0, 1], the characteristic function χ(a,b)

is representable as a Łc(ω1), C-formula.

Proof. I claim that if ε < b−a, then χ(a,b)(x) = pub−a−εrb−a−ε¬uεrbx. To see this,
it is enough to see that ub−a−εrb−a−ε¬uεmbx = 1 iff a < x < b. This splits into
three cases to check:

• 0 ≤ x ≤ a: Then,

1− b ≤ rbx ≤ 1− b+ a
1− b+ ε ≤ uεrbx ≤ 1− b+ a+ ε
b− ε ≥ ¬uεrbx ≤ b− a− ε
a ≥ rb−a−ε¬uεrbx ≥ 0

b− ε ≥ ub−a−εrb−a−ε¬uεrbx ≥ b− a− ε.
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• a < x < b: Then,

1− b+ a < rbx < 1
1− b+ a+ ε < uεrbx ≤ 1
b− a− ε > ¬uεrbx ≥ 0

1 > rb−a−ε¬uεrbx ≥ 1− b+ a+ ε
1 ≥ ub−a−εrb−a−ε¬uεrbx ≥ 1.

• b ≤ x ≤ 1: Then,

0 ≤ rbx ≤ 1− b
ε ≤ uεrbx ≤ 1− b+ ε

1− ε ≥ ¬uεrbx ≥ b− ε
1− b+ a ≥ rb−a−ε¬uεrbx ≥ a

1− ε ≥ ub−a−εrb−a−ε¬uεrbx ≥ b− ε.
See Figure 2 for a graphical depiction of these transformations. �

Proof of Theorem 11. Let f : [0, 1]κ → [0, 1] be a fixed truth function. First, note
that for every A ⊆ [0, 1]κ, there is σA(x̄) = χA(x̄). By Lemma 12, if I is an
open interval, there is a Łc(ω1), C-formula ϕI so that χI(x) = ϕI(x). Thus, if
{In} is a countable collection of open intervals whose intersection is {a}, ψa(x) =∧
n ϕI(x) = χ{a}(x). Therefore,

σA(x̄) =
∨
ā∈A

∧
i<κ

ψai(xi) = χA(x̄).

By an argument similar to the one in Theorem 9, f is represented by∨
y∈[0,1]

d1−yσf−1(y)(x̄). �

We now turn to the question of which Łc truth functions are representable when
only countable disjunctions and conjunctions are allowed.

Definition 13. f : [0, 1]` → [0, 1] is Borel if the pre-image under f of any open set
is Borel.

Definition 14. s : [0, 1]` → [0, 1] is a step function if there are A1, . . . , Ak ⊆ [0, 1]`

and a1, . . . , ak ∈ [0, 1] so that s =
∑
i≤k aiχAi . If each Ai is Borel, we say that s is

a Borel step function.

Recall the following standard facts about Borel functions:

Proposition 15.
• f : [0, 1]` → [0, 1] is Borel iff there is an increasing sequence 〈si〉 of Borel
step functions whose limit is f .
• If fi : [0, 1]` → [0, 1] are Borel, i ∈ N, then sup fi and inf fi are Borel.
• The composition of Borel functions of Borel.

Arguments for these can be found in e.g. [6, Theorems 1.12d, 1.14, 1.17].
It is easy to see that every truth function represented as a Łc(ω1), C-formula is

Borel. The unary connectives are all Borel and being Borel is preserved by countable
suprema and infima, i.e. by countable disjunctions and conjunctions. The content
of the following theorem is that the reverse implication is also true.
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Figure 2. Representing χ(a,b) as a Łc truth function.

x 7→ x x 7→ rbx

a b a b

x 7→ uεrbx x 7→ ¬uεrbx

a b a b

x 7→ rb−a−ε¬uεrbx x 7→ ub−a−εrb−a−ε¬uεrbx

a b a b

x 7→ pub−a−εrb−a−ε¬uεrbx

a b

Theorem 16. The class of truth functions [0, 1]` → [0, 1] expressible as Łc(ω1), C-
formulae is the class of Borel functions.

Lemma 17. For every open G ⊆ [0, 1]`, χG is representable as a Łc(ω1), C-formula.

Proof. G is a countable union of cubes Q =
∏
i≤`(ai, bi). Lemma 12 gives that χQ

is representable as a Łc(ω1), C-formula: if ϕi represents χ(ai,bi), then ψQ =
∧
i≤` ϕi
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represents χQ. To represent χG, take the disjunction of ψQ for these countably
many Q. �

Lemma 18. For every Borel B ⊆ [0, 1]`, χB is representable as a Łc(ω1), C-
formula.

Proof. The family of sets whose characteristic functions can be represented as
Łc(ω1), C-formulae is closed under countable unions and complements. The for-
mer fact is because χ⋃

An
=
∨
χAn . The latter fact is because χ[0,1]`\A = ¬χA.

Therefore, this class of sets contains all the Borel sets. �

Proof of Theorem 16. We have already seen one direction of the argument. For
the other direction, fix Borel f : [0, 1]` → [0, 1] and increasing sequence 〈si〉 whose
supremum is f . It suffices to show that each si is representable as a Łc(ω1), C-
formula. Let si =

∑
j≤k ajχAj , where Aj is Borel. We may assume without

loss that the Aj are disjoint. By the previous lemma, χAj
is representable as

ϕj(x̄). Thus, ajχAj is representable as d1−ajϕj(x̄). Therefore, si is representable
as
∧
j≤k d1−ajϕj(x̄). �

Finally, let us consider to what extent when can get this result with a smaller
set of connectives. First, observe that ∧, ∨, and ¬ can be defined in terms of
↑, as in the case of Łn. For the rotations rx, note that they can be replaced with
constants—i.e. 0-ary connectives—and a single binary connective. Let x	y = x−y
(mod 1). Then rxa = a	 x.

The definition in Łn of d in terms of ∧ and r can be generalized to Łc:

dxa =
∧
y<x

rya.

If a ≥ x, this is rxa = dxa. Else, this is 0 = dxa. Moreover, this conjunction can
be taken over any set dense in (0, x). This allows us to define dx as a countable
conjunction of rotations.

On the other hand, the definition in Łn of p does not carry over to the infinite
case. That definition used essentially that the set of truth values for Łn is dis-
crete. This is not so bad, however, as p is just one connective, much less than the
continuum many we already have included.

Putting these remarks together, along with Theorems 11 and 16, yields:

Theorem 19. Let D = {↑,	, p, x : x ∈ (0, 1)}.
(1) Every truth functions [0, 1]κ → [0, 1] is representable as a Łc(λ), D-formula,

where λ is the least cardinal > max(κ, c). Therefore, any Łc-truth function,
i.e. of arbitrary infinite arity, is representable as a Łc(∞), D-formula.

(2) The class of functions [0, 1]` → [0, 1] representable as Łc(ω1), D-formulae
is the class of Borel functions.
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