Proof Theory

What is a formal proof? (Formal proofs are rare, even in Math!)
Huge variety of formal proof systems, but only all generally (?) have:
- logical axioms (e.g., \(P \rightarrow (Q \rightarrow P) \))
- rules of inference (e.g., modus ponens)

Logical axioms typically include / consist in logical axiomatics.

(Thibert style) \(\forall \) (in Theory \(T \) of \(\mathcal{L} \))

Define a (formal) proof in such a system -- is a finite list of formulas \(\ell_1, \ell_2, \ldots, \ell_n \)
Such that each \(\ell_i \) is either
(1) a logical axiom
or (2) an axiom of Theory \(T \)
or (3) \(\ell_i \) follows from each \(\ell_j \)

by rules of inference
and \(\mathcal{L} \) is one of the \(\ell_i \) is.

Natural deduction style:

```
\[ \begin{array}{c}
\text{Proof tree}\end{array} \]
```

(Fitch style)

\[\begin{array}{c}
\text{Proof tree}\end{array} \]

The rule Modus ponens tells you the proof-theoretic meaning of implication.

\(\text{T : } \Gamma \vdash \phi \text{ : Then \phi is a proof of } \phi \text{ from } \Gamma \)
Desirable features in a proof system:

- Soundness: if $T \vdash \phi$, then $T \models \phi$.
- Completeness: if $T \models \phi$, then $T \vdash \phi$.

If the logical axioms are valid (or models?) and the rules of inference are truth-preserving, then the system is sound.

For decidability, we want to be able to determine in a purely mechanistic way whether something is a proof (proofs should be checkable).

- We should be able to recognize whether something is an axiom and whether some particular ϕ follows from some other formulas ψ_1, \ldots, ψ_n by rules of inference.

Exercise:

(a) Construct a formal proof system that is sound but not complete.

(b) Construct a formal proof system that is complete but not sound.

(c) Construct a formal proof system that is sound and complete, but not decidable.

Hints: These are not technical, keep it simple.
So \((a, \lambda x. a \rightarrow a) \rightarrow a \) is a model of \(\mathbf{M} \).

Suppose \(\mathbf{M} \) is a model of \(\mathbf{M} \). By completeness, there is a finite subset of \(\mathbf{M} \) such that \(\mathbf{M} \) is a model of \(\mathbf{M} \).

So every model of \(\mathbf{M} \) is a model of \(\mathbf{M} \).

Theorem: \(\mathbf{M} \) is sound and complete.

Proof: (Soundness): If \(\mathbf{M} \) is a model of \(\mathbf{M} \), then \(\mathbf{M} \) is a model of \(\mathbf{M} \).

- Let's verify that \(\mathbf{M} \) is a model of \(\mathbf{M} \).

- If \(\mathbf{M} \) is an axiom, \(\mathbf{M} \) is a model of \(\mathbf{M} \).

- Otherwise, \(\mathbf{M} \) is deduced from \(\mathbf{M} \) and \(\mathbf{M} \), and \(\mathbf{M} \) is a model of \(\mathbf{M} \).

So if \(\mathbf{M} \) is a model of \(\mathbf{M} \), then \(\mathbf{M} \) is a model of \(\mathbf{M} \).

Conversely, \(\mathbf{M} \) is deduced from \(\mathbf{M} \) and \(\mathbf{M} \), and \(\mathbf{M} \) is a model of \(\mathbf{M} \).

- Therefore, \(\mathbf{M} \) is an axiom, \(\mathbf{M} \) is a model of \(\mathbf{M} \).

Thus, \(\mathbf{M} \) is a model of \(\mathbf{M} \).

Rules of inference: \(\otimes, \rightarrow, \land \).

Axioms: \(\mathbf{M} \).

Gold: Axiom

Formal completeness (Gold's completeness theorem)

(\(\mathbf{M} \) is a complete formal system)

The \(\mathbf{M} \) proof system

(A. Miller)
Instead of:

\[(A \rightarrow B) \rightarrow C \]

\[= A \rightarrow (B \rightarrow C) \]

This is logically connect to:

\[\sigma_1 \rightarrow (\sigma_2 \rightarrow (\sigma_3 \rightarrow \ldots (\sigma_n \rightarrow \sigma_i))) \]

So, it's an axiom of \(T \).

Now, proof:

\[\sigma \text{ is a logical axiom in } M. \]

\[\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_n \] are axioms in \(T \).

Use Modus ponens \(K \) times to get \(\sigma_i \).

So \(T \vdash \sigma_i \).

What's wrong with \(M.M \)?
That the axioms are all logical validities.

What's wrong with this?

We can't recognize the axioms - how do we know whether something is true in all models? (Incompleteness theorem will show us that it's impossible to get an algorithm to decide whether something is a logical validity.)

So we need to cut down our axioms, but we still want to be able to prove all logical validities.
another proof system (ð)

Logical axioms:
1. all formulas in the form of a propositional tautology universally quantified.
 e.g. \(\forall x (\phi \rightarrow (\psi \rightarrow \theta)) \)

2. quantified axioms - universally quantified instances:
 \(\forall x (\exists y (\chi)) \rightarrow (\exists y (\exists \gamma \rightarrow \chi)) \)
 \(\forall x (\epsilon (x) \rightarrow \exists x (\beta (x))) \)
 \(\forall x (\epsilon (x) \rightarrow \forall x (\beta (x))) \)
 \(\forall x (\epsilon (x) \rightarrow \forall x (\beta (x))) \)
 \(\forall x (\epsilon (x)) \rightarrow \forall x (\beta) \)

3. equality axioms
 \(\forall x (x = x) \)
 \(\forall x (\epsilon (x_0 = x_1 = x_2 = x_3 = \ldots) \rightarrow) \)
 \(\epsilon (x_0', x_1', \ldots, x_n') \).

Rules of inference:

Modal powers.

\(\beta \) is decidable.
Every proof system has its own concept of proof (but it's always based on the formal proof, right?)

Get a concept of T

\[\exists x \rightarrow \neg(x) \rightarrow \forall x \rightarrow x(x) \]

1. \[\exists x \rightarrow x(x) \] 2. \[\exists x \rightarrow x(x) \rightarrow \forall x \rightarrow x(x) \] by MP from 1, 2
3. \[\forall x \rightarrow x(x) \]
4. \[\forall x \rightarrow x(x) \rightarrow \neg x(x) \] by MP from 1, 2
5. \[\forall x \rightarrow x(x) \rightarrow (\forall x \rightarrow x(x)) \rightarrow (\forall x \rightarrow x(x)) \]
6. \[\forall x \rightarrow x(x) \rightarrow (\forall x \rightarrow x(x)) \] by MP from 1, 5
7. \[(\forall x \rightarrow x(x)) \rightarrow (\forall x \rightarrow x(x)) \] by MP from 1, 2
8. \[(\forall x \rightarrow x(x)) \rightarrow (\forall x \rightarrow x(x)) \] by MP from 1, 5
9. \[(\forall x \rightarrow x(x)) \]

The name exists of a proof = the existence of a model where \(T \) is satisfied by \(\sigma \) is not satisfied by \(\sigma \).

4-color theorem: Say you have a map with touching areas to be different colors. For any map, you can 4-color it.

Haken finally proved this theorem by writing a computer program to check 50,000 cases (reduced for 600). Is that a proof? Doesn't tell us it's true! Thay, 10 yrs ago, computer proved 4,048,057,630 5-color maps, 70 miles long, checked by other computers.
Proof of Decidability in \(\mathfrak{B} \):
\[
(\vdash t \rightarrow \mathcal{Y}) \leftrightarrow (\top, t \vdash \mathcal{Y})
\]

proof:

\[
\begin{align*}
\vdash & \; \mathcal{T} \vdash \mathcal{T} \rightarrow \mathcal{Y} \\
\text{Then} \quad & \; \mathcal{T} \wedge \mathcal{L} \vdash \mathcal{L} \rightarrow \mathcal{Y} \\
& \quad \mathcal{T} \vdash \mathcal{T} \wedge \mathcal{L} \rightarrow \mathcal{L} \rightarrow \mathcal{Y} \\
& \quad \mathcal{T} \vdash \mathcal{T} \rightarrow \mathcal{Y}
\end{align*}
\]

\[
\begin{align*}
\vdash & \; \mathcal{T} \wedge \mathcal{L} \rightarrow \mathcal{Y} \\
& \quad \text{so this is a proof} \; \Theta_1, \ldots, \Theta_n
\end{align*}
\]

Claim: \(\vdash \; \mathcal{T} \vdash \mathcal{L} \rightarrow \Theta_i \) for each \(i \);

proof:

\[
\begin{align*}
(1) & \; \text{if } \Theta_i \text{ is a tautology, then} \\
& \quad \mathcal{L} \rightarrow \Theta_i \text{ is also a tautology,} \\
& \quad \mathcal{T} \vdash \mathcal{L} \rightarrow \Theta_i
\end{align*}
\]

\[
\begin{align*}
(2) & \; \text{if } \Theta_i \text{ arises from a quantifier} \\
& \quad \text{ axiom, then check that } \mathcal{T} \vdash \mathcal{L} \rightarrow \Theta_i \\
& \quad \text{(use } \mathcal{L} \Theta_i \rightarrow (\mathcal{L} \rightarrow Q_i))
\end{align*}
\]

thus \(\mathcal{T} \vdash \mathcal{L} \rightarrow \mathcal{Y} \)

Proof of the Completeness theorem (1929)

In \(\mathfrak{B} = \vdash \top \text{ iff } \vdash \mathcal{Y} \).

Define: \(\mathcal{T} \) is consistent iff \(\mathcal{T} \) does not prove \(\mathcal{L} \wedge \mathcal{L} \) for any \(\mathcal{L} \). Otherwise \(\mathcal{T} \) is "blown up".

\(\mathcal{E} \mathcal{L} \) \(\mathcal{T} \) is inconsistent iff \(\mathcal{T} \vdash \mathcal{L} \) for all \(\mathcal{L} \).

\(\vdash \mathcal{T} \) is strong}

\(\rightarrow \) \text{ if } \mathcal{T} \vdash \mathcal{L}, \text{ it proves anything.}

\(\text{Recursively Tautology) } \) in \(\mathfrak{B} \)
Lemma: Every consistent theory is satisfiable.

Now, given this lemma, let's prove completeness:

(\rightarrow) (Soundness) if you can prove it's right

(\leftarrow) (Completeness) if it's right you can prove it.

Soundness is easy - axioms and rules are valid in our proof system.

(\leftarrow) (Completeness):

Assume $T \vdash \Theta$

So $T \vdash \Theta$ is not satisfiable.

So $T \vdash \neg \Theta$ is inconsistent.

So $T, \neg \Theta \vdash \bot$

So by Deduction Theorem

$T \vdash \neg \Theta \rightarrow \bot$

$T \vdash (\neg \Theta \rightarrow (\bot \bot)) \rightarrow \bot$ (tautology)

So $T \vdash \bot$. Yay.

Now let's prove the Lemma.

Give Haukás proof:

Claim: If T is consistent, any formula ϕ, either $T \vdash \phi$ is consistent or $T, \neg \phi$ is consistent.

Proof: if $T \vdash \phi$ is not consistent, then

$T \vdash \bot$.

But then $T \vdash \phi \rightarrow \bot$, so $T \vdash \bot$ (taut).
So $T + \neg C$ has all cases of T,
So $T + \neg C$ is consistent

(\textit{vice versa})

Claim: if T is consistent, $C(x)$ is any
particular, C is any new constant, then
$T + \exists x. C(x) \rightarrow C(c)$ is consistent.
(Here in assertion) (Hence consis.)

Theorem on constants: $T + C(x)$ where
$C = \text{a constant not appearing in}$ T, then $T + \forall x. C(x)$.

\textit{allows the generic result to be generalised}

Proof: assume $T + C(c)$.
So $\exists \text{ proof } \Theta_0, \ldots, \Theta_k$, $C(c)$
Show that $T + \forall x. \Theta_0 \land \Theta_k$
\[\forall x (c \rightarrow \Theta_0) \rightarrow \forall x. C(x \rightarrow \forall x. \Theta_0) \]

Proof: If $T + C(c)$, not consistent, then $T + \exists x. \neg C(x)$
By the theorem on (constants), $T + \exists x. C(x) \land$
\[\forall x \neg C(x) \quad \text{allure or } + \text{ in } T. \]
So T is inconsistent.

Every consistent theory can be
extended to one a complete consistent
Haken. Any such theory is satisfiable.

(but model only (constant constants))