Logic 4129/15

Incompleteness

Hilbert's program (reached its set-theoretic peak: proving a self-contained foundation for arithmetic by proving a finite list of axioms for arithmetics that are consistent and complete (using only the axioms, ideally)).

Peano arithmetic was a proposed axiomization: \((\mathbb{N},+,\cdot,0,1,<)\) axioms: familiar successor plus "the induction scheme" (\(\forall x. P(0) \land \forall x. P(x) \Rightarrow P(x+1)\) \(\Rightarrow \forall x. P(x)\)) (very powerful)

Hilbert wanted to prove that P.A. was complete and \(\omega\)-consistent (though it's not finite)?

If there were a finite, complete, consistent set of axioms for arithmetic, then they'd eventually settle all questions systematically.

If not, two are questions not settled by the axioms: we'd have to justify or axiomatize some others away if we can justify it at all.
Theorem (Proof by Kleene, cf.)

If T is any true, computably axiomatizable theory of arithmetic, then T does not prove all true statements (i.e., it is incomplete).

Suppose T is the one and has a complete list of axioms. Generate all proofs from those axioms.

Then we can solve the halting problem, i.e., given a Turing machine P and an input k, we can check to see if P halts on k.

Q: But is T expressible in the language?

Only if so, is this a reduction?

But we know that the halting problem is not decidable.

Five words of K (KG): If T is any true, computably axiomatizable theory, then there is some TM or some input k such that P does not halt on k, but T does not prove this.

Proof: If T proves all instances of the halting problem, then we can solve the halting problem.
Given P, k, half-time run $P(k)$, hence time code for a proof that $P(k)$ doesn't halt. So we solve the halting problem P.

So there must be some formula that does not halt and the thing does not prove it.

Theorem 2: For any computable and time-true P in the language of arithmetic, there is a polynomial $P(x, \ldots, x_n)$ with integer coefficients such that $P(x, \ldots, x_n) = 0$ has no solution in the integers, but it does not prove this.

(Consequence of MRDP Theorem)

Gödel's Incompleteness Theorem:

Key idea: Arithmeticization of syntax \rightarrow

All finite combinatorial mathematical objects can be represented as numbers.

In, we can extract all information of any object from its numerical representation.

Gödel coding:

- Formal language of arithmetic ($+, \leq, \vdash;\quad 0, \exists, \forall, \ldots$ etc.)

Assign each symbol a Gödel code:

A number (e.g., $+/2$, $0/3$... etc.)
Now, sequences of symbols have their own Gödel code.

\[\text{e.g. } \forall x \forall y \exists z \]

the \(n_0, n_1, n_2, \ldots, n_k \) might be the individual codes of the symbols in \(\forall \), you can give a single number that represents that sequence; \(\text{e.g. } 2^{n_0} \cdot 3^{n_1} \cdot 5^{n_2} \cdot \ldots \cdot p_k^{n_k} \) which definitely represents \(\forall \).

So: all of the syntactic operations on formulas are representable in the language of arithmetic, via Gödel coding.

Thus, whether a given program holds on an input is expressible in arithmetic, b/c it can be expressed as a number (I don’t really understand why we care, should we think this?)

So, syntactic properties are expressible too.

\[z \text{ is the code of an axiom of } T \]

From definition of \(T \), \(T \vdash F(x) \) and \(\forall x : T \vdash F(x) \text{ provable in } T \)

\[\text{and } \forall x : \text{a syntactic property} \]
Also expressible in arithmetic, but yay! We just saying "that \(\forall y. y \) is the code of a proof of \(\bot \) in \(\mathcal{T} \)". And that's expressible by our notion of proof in syntactic.

\[
\text{Contradiction ("\(\mathcal{T} \) is consistent") is expressible,}
\]

\[
\text{since it just says: "it's not the case that \(\mathcal{T} \) proves a \(\bot \), i.e., \(\neg \text{Pr}_T(\text{\#0} = \text{\#0}) \).}
\]

So assertions about numbers can be assertions about arithmetic.

Fixed pt. Lemma (Carnap):

For any formula \(\psi(x) \) in the language of arithmetic, there is a sentence \(\phi \) such that \(\text{PA} + \psi \iff \phi \). \(\psi \) says that its code has property \(\phi \).

\[\psi \iff \phi(n) \text{ when } n \text{ is the code of } \psi.\]

Proof:

Define \(\text{Sub}_{1}E(x)\).

Let \(\theta(x) = \phi(\text{Sub}_{1}(x, x)) \)

Let \(\psi = \theta(x) \)

Let \(\phi = \theta(n) \)
\[PA \vdash \psi \iff \Theta(n) \]
\[\iff \psi \iff \Theta(n) \]

So this allows us to have self-reference — indeed, it's everywhere.

\[\psi \text{ says: } "\psi \text{ holds if the Gödel code of } \psi" \]

\[\psi \text{ asserts that } \psi \text{ holds of its Gödel code.} \]

From Gödel's First Incompleteness Theorem

If \(T \) is a true, representable / computable, axiomatizable, Theory of arithmetic, then \(T \) is incomplete.

Proof:

By the fixed point lemma, there is a sentence \(\psi \) such that

\[PA \vdash \psi \iff \neg \Pr(\ulcorner \psi \urcorner) \]

\[\psi \iff \"\psi \text{ is not } \neg \Pr(\ulcorner \psi \urcorner)\" \]

If \(T \vdash \psi \), then \(T \vdash \Pr(\ulcorner \psi \urcorner) \), so

\[T \vdash \Pr(T(\ulcorner \psi \urcorner)) \land \neg \Pr(\ulcorner \psi \urcorner) \]

So \(T \) is inconsistent.

So \(T \) does not prove \(\psi \). So \(\psi \) is true!
Gold's 2nd incompleteness theorem.

If T is true, then PA is consistent and PA-yields consistency (T):

Proof: We argued before that if T is consistent, then PA is consistent, T is consistent. Thus $\text{PA} \vdash \neg \text{yields consistency}(T)$.

Now $\text{PA} \vdash \text{yields consistency}(T) \rightarrow \neg T$, i.e.

Fix ϕ as before. $\text{PA} \vdash \neg \text{yields consistency}(\phi)$.

Proof: We argued previously that PA yields consistency (ϕ).

Hilbert–Bernays derivability conditions (basic logic):

$b): \text{IT} \vdash \text{PA} \vdash \text{yields consistency}(T)$, which implies PA.

So $\text{IT} \vdash \text{PA} \vdash \text{yields consistency}(T)$, but otherwise PA consistent. $\text{PA} \vdash \neg \text{yields consistency}(T)$.
Löb's Theorem:

IF $T \vdash \text{Pr}_T(\langle \varphi \rangle) \rightarrow \varphi$

Then $T \vdash \varphi$.

3) is my easy. 1) is easy as in how (2)?

(2):

- Formalize the previous implication instead

From (1), (2), and (2):

$$4 \leftrightarrow \neg \text{Pr}_T(\langle \varphi \rangle)$$

(1) $T \vdash \text{Pr}_T(\langle \neg \varphi \rangle) \rightarrow \neg \text{Pr}_T(\langle \neg \varphi \rangle)$

(3) $T \vdash \text{Pr}_T(\langle \varphi \rangle) \rightarrow \text{Pr}_T(\langle \neg \text{Pr}_T(\langle \varphi \rangle) \rangle)$

By (2). $T \vdash \text{Pr}_T(\langle \varphi \rangle) \rightarrow \text{Pr}_T(\langle \neg \text{Pr}_T(\langle \varphi \rangle) \rangle)$

So $T \vdash \text{Pr}_T(\langle \varphi \rangle) \rightarrow \text{Pr}_T(\langle \neg \text{Pr}_T(\langle \varphi \rangle) \rangle)$; so you're proven. Thus

If 4 is provable, I can prove

1, which means that $\neg 4 \rightarrow$

$\neg \text{con} (T)$. So $T \vdash \text{con} \rightarrow 4$.

$$T \vdash \neg 4 \rightarrow \text{con} \neg$$

$$T \vdash \text{con} \rightarrow 4$$

Given assume that T was true but he
only needed to assume it was co-consistent.

Theorem (Gödel/Post correspondence)
Every consistent representable theory T
containing PA is incomplete.
Proof: Use Rosser sentence (Ω)

PA ⊢ Ω → "for any proof of 50 ⊢ Ω,
that is a shorter proof of 50 ⊢ ¬Ω!"

(In proof has at least k steps)

If T ⊢ Ω, then T must prove that there is a shorter proof of 50 ⊢ ¬Ω of length < k.

But then T ⊢ ¬Ω. L. T is consistent.

If T ⊢ ¬Ω, then this is a proof of length k

T ⊢ Ω. That is a proof of Ω or no shorter proof of ¬Ω. So the whatever proof of Ω has to be shorter than our proof of ¬Ω.

So T ⊢ Ω. L.

So T does not prove Ω or ¬Ω, hence Ω.

So we cannot find compact axiomatizations of arithmetic. So we cannot expect a recursive independence phenomenon.

∀T there is an Ω such that Ω is not provable by T.

ζ(Ω) ∈ FC, assuming continuum hypothesis, and certain others.
Since you can never prove the consistency of T & then it is not the case that T then no consistent they can be complete.

Goldsten Sequences

\[a_2 = 4^2 = \frac{2^{2^3+1}}{2^{2+1} + 2} \quad \text{(correct base 2)} \]

\[a_3 = \frac{3^{3^2} + 1}{3^{3+1} + 3} - 1 = \frac{3^{3^2} + 1}{3^{3+1} + 3} - 1 \]

\[a_4 = \frac{4^{4^{4+1}} + 4^{4+1} + 4}{3} \]

\[a_5 = \ldots \]

\[a_6 = \frac{3^{3^{3^{3+1}}} + 3^{3^{3+1}}} - 1 = \ldots \]

Goldstein's Theorem

\[\forall a_2 \in \mathbb{N}, a_3 = 0 \]

Theorem (Curry & Paris)

Goldsteins' Theorem is not provable in PA. It is true but not provable in PA.

It is provable in set theory but not arithmetic.

Hydra Theorem

1. Every strategy succedes in killing the hydra, even!

2. The existence of (2) is not provable in PA. (But in set theory, PA is not at all enough for that.)