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Pointwise definability
Definition

A model is pointwise definable, if every individual is definable
without parameters.

The Math Tea argument

There must be some real numbers we can neither describe nor
define, because there are uncountably many reals, but only
countably many definitions.

Pointwise definable models may pose a problem...

Meanwhile:
“I can describe any number. Let me show you: you tell
me a number, and I’ll tell you a description of it.”

–Horatio, age 8
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Leibnizian models

Definition

A model M is Leibnizian, if distinct elements have different
properties.

If a ̸= b, then for some property φ,

M |= φ[a] but M |= ¬φ[b].

Leibnizian models are thus precisely those that fulfill:

Leibniz principle on Identity of Indiscernibles

Indiscernible individuals are identical.
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Goal Theorems

I aim to provide a flexible new proof of:

Goal Theorem 1

Every countable model of PA has a pointwise definable
end-extension.

The same method applies in set theory.

Goal Theorem 2

Every countable model of ZF has a pointwise definable
end-extension. Can achieve V = L in the extension, or any
other theory, if true in an inner model of V = HOD.
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Goal Theorems

Goal Theorem 3

Every model of PA of size at most continuum has a Leibnizian
extension.

The same method applies in set theory.

Goal Theorem 4

Every model of ZF of size at most continuum has a Leibnizian
extension to a model of V = L, or indeed of any theory true in
some inner model of V = HOD.

The proofs are both flexible and soft.
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Universal algorithm
The method begins with a remarkable theorem of Woodin
[Woo11].

Namely, there is a Turing machine program e with an amazing
universal extension property:

1 It enumerates a finite sequence, and PA proves this.
2 In any model M |= PA, if the sequence is s, then for any

desired t , there is an end-extension in which e computes t .

N

M

s
t

History: Woodin [Woo11], Blanck and Enayat [BE17;
Bla17], simplified proof in [Ham18; Ham17].

Proof proceeds by a highly self-referential algorithm,
“the petulant child.”
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Generalization to Σm-elementary extensions

The result generalizes ([Ham18]) to provide a Σm+1-definable
finite sequence, with the universal extension property with
respect to Σm-elementary end-extensions M ≺Σm N.

N

M

s

t

Again every model M |= PA can realize any
desired extension t in an end-extension N.

But the difference now is that Σm truth is
preserved between M and N.
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Pointwise definable end-extensions
Main theorem 1 (Hamkins)

Every countable model of PA has a pointwise definable end
extension satisfying PA.

Proof.

Build a tower of progressively elementary extensions

...
M3

M2

M1

M0

M0 ⊆ M1 ≺Σ1 M2 ≺Σ2 M3 ≺Σ3 · · ·

Put a0 last on the Σ1-definable sequence.

Then a1 last on Σ2-sequence, and so on.

Limit model N is a model of PA.

Can arrange that every element becomes
definable. So N is pointwise definable.
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Universal definition in set theory
Woodin and I proved a set-theoretic analogue of the universal
algorithm [HW17].

There is a Σ2 definable finite sequence

a0, a1, . . . , an

with the universal extension property for top-extensions.

N

M

s
t

If sequence is s in countable M |= ZFC, then
for any desired t , there is a top-extension
N |= ZFC in which the sequence is t .

The definition (complex, sophisticated) essentially
looks for stages Vα that have no end-extension
adding a next point a, even in any forcing extension,
and when found, adds a anyway. “petulant child”
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Σ1-definable universal sequence

Kameryn Williams and I proved [HW21] the Σ1-analogue.

There is a Σ1 definable sequence

a0, a1, . . . , an

with the universal extension property for end-extensions.

N

M

s
t

If sequence is s in countable M |= ZFC,
then for any desired t , there is an
end-extension N |= ZFC in which the
sequence is t .

In fact, can get N |= ZFC for any theory
true in some inner model W of M.

Madison 2023 Joel David Hamkins
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Generalization to Σm elementary end-extensions

In new work, I have been able to generalize to find a Σm+1
definable sequence of ordinals

α0 α1 α2 · · · αn

with the universal extension property for Σm-elementary
end-extensions.

N

M

s
t

Every countable model M |= ZF with
sequence s has a Σm-elementary
end-extension N |= ZF realizing any
desired extension t .

If V = HOD, can translate this to all
objects, not just ordinals.

Madison 2023 Joel David Hamkins
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Pointwise definable extensions in set theory
Main theorem 2 (Hamkins)

Every countable model of ZF has a pointwise definable end
extension.

Indeed, it has such an extension satisfying
ZFC + V = L.

Somewhat more general version:

Theorem (Hamkins)

Every countable model of ZF with an inner model of a c.e.
theory ZFC that includes V = HOD has a pointwise definable
end-extension satisfying ZFC.

This realizes a certain resurrection property: whatever is true in
some inner model can become true again in an end-extension,
even a pointwise definable end-extension.

Madison 2023 Joel David Hamkins
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
Σm-elementary pointwise definable end-extension.

Proof.

Build a tower of progressively elementary extensions

...
M3

M2

M1

M0

M0 ⊆ M1 ≺Σ1 M2 ≺Σ2 M3 ≺Σ3 · · ·

Put a0 last on the Σ1-definable sequence.

Then a1 last on Σ2-sequence, and so on.

Limit model N is a model of ZFC.

Can arrange that every element becomes
definable. So N is pointwise definable.
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Consequences

Rich collection of consequences for the universal finite
sequence

Any object can become definable

Pointwise definability comes by iterating this
Pointwise definability is a switch
No maximal Σm theory
Modal logic of end-extension potentialism is exactly S4
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The tree of top-extensions

M

N0

N1

N11
N10

Radical-branching potentialism.
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Leibnizian analogue

Goal

To prove the analogues for Leibnizian extensions in place of
pointwise definability.

1 Pointwise definable models (in a finite language) must be
countable.

2 Leibnizian models have size at most continuum.

Question

Does every model of arithmetic (and set theory) of size
continuum have a Leibnizian extension?

Yes.
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Leibnizian extensions for PA

Theorem

Every model of PA of size at most the continuum admits a
Leibnizian extension. Indeed, for any particular natural number
m, the model admits a Σm-elementary Leibnizian extension.

Proof strategy. Given M0 |= PA of size at most continuum,
construct a progressively elementary tower

M0 ≺ M1 ≺Σm M2 ≺ M3 ≺Σm+1 M4 ≺ M5 ≺Σm+2 · · ·

Even stages, fully elementary. Create a countable set of
points from which previous elements are discernible.

Odd stages, progressively elementary. Make those points
definable.
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Even stages

At even stages, we create discernibility relative to countably
many new constants.

Suppose M has size continuum. Assign to each a ∈ M a binary
sequence sa ∈ 2ω.

Consider the theory

T = ∆(M)+“cn codes a set with a as member”, when sa(n) = 1.

Finitely consistent, hence consistent.

So we find M ≺ N with countably many new elements cn that
discern the elements of M.

Madison 2023 Joel David Hamkins



Introduction Pointwise definability for PA Pointwise definability for ZF Leibnizian extensions

Even stages

At even stages, we create discernibility relative to countably
many new constants.

Suppose M has size continuum. Assign to each a ∈ M a binary
sequence sa ∈ 2ω.

Consider the theory

T = ∆(M)+“cn codes a set with a as member”, when sa(n) = 1.

Finitely consistent, hence consistent.

So we find M ≺ N with countably many new elements cn that
discern the elements of M.

Madison 2023 Joel David Hamkins



Introduction Pointwise definability for PA Pointwise definability for ZF Leibnizian extensions

Even stages

At even stages, we create discernibility relative to countably
many new constants.

Suppose M has size continuum. Assign to each a ∈ M a binary
sequence sa ∈ 2ω.

Consider the theory

T = ∆(M)+“cn codes a set with a as member”, when sa(n) = 1.

Finitely consistent, hence consistent.

So we find M ≺ N with countably many new elements cn that
discern the elements of M.

Madison 2023 Joel David Hamkins



Introduction Pointwise definability for PA Pointwise definability for ZF Leibnizian extensions

Even stages

At even stages, we create discernibility relative to countably
many new constants.

Suppose M has size continuum. Assign to each a ∈ M a binary
sequence sa ∈ 2ω.

Consider the theory

T = ∆(M)+“cn codes a set with a as member”, when sa(n) = 1.

Finitely consistent, hence consistent.

So we find M ≺ N with countably many new elements cn that
discern the elements of M.

Madison 2023 Joel David Hamkins



Introduction Pointwise definability for PA Pointwise definability for ZF Leibnizian extensions

Even stages

At even stages, we create discernibility relative to countably
many new constants.

Suppose M has size continuum. Assign to each a ∈ M a binary
sequence sa ∈ 2ω.

Consider the theory

T = ∆(M)+“cn codes a set with a as member”, when sa(n) = 1.

Finitely consistent, hence consistent.

So we find M ≺ N with countably many new elements cn that
discern the elements of M.

Madison 2023 Joel David Hamkins



Introduction Pointwise definability for PA Pointwise definability for ZF Leibnizian extensions

Odd stages

At odd stages, we make the accumulating constants definable.

M0 ≺ M1 ≺Σm M2 ≺ M3 ≺Σm+1 M4 ≺ M5 ≺Σm+2 · · ·

Thus, we build a progressively elementary tower, in which the
constants all eventually become definable.

These constants support the discernibility of the other
elements.

And so the limit model is Leibnizian, as desired.
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Thank you.

Slides and articles available on http://jdh.hamkins.org.

Joel David Hamkins
O’Hara Professor Philosophy and Mathematics
University of Notre Dame
Associate Faculty Member, Professor of Logic
University of Oxford
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