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Abstract. I present instances of nonlinearity and illfoundedness in the hierar-

chy of large cardinal consistency strength—as natural or as nearly natural as I
can make them—and consider philosophical aspects of the question of natural-

ity with regard to this phenomenon. I provide various cautious enumerations of

the ZFC axioms which succeed in enumerating all the ZFC axioms, but with
a strictly weaker consistency strength than the usual (incautious) enumera-

tion. And similarly there are various cautious versions of many large cardinal

hypothesis, which are natural but also incomparable in consistency strength.

It is a mystery often mentioned in the foundations of mathematics, a fundamental
phenomenon to be explained, that our best and strongest mathematical theories
seem to be linearly ordered and indeed well-ordered by consistency strength. Given
any two of the familiar large cardinal hypotheses, for example, generally one of
them will prove the consistency of the other.

Why should it be linear? Why should the large cardinal notions line up like this,
when they often arise from completely different mathematical matters? Measur-
able cardinals arise from set-theoretic issues in measure theory; Ramsey cardinals
generalize ideas in graph coloring combinatorics; compact cardinals arise with com-
pactness properties of infinitary logic. Why should these disparate considerations
lead to principles that are linearly related by direct implication and consistency
strength?

The phenomenon is viewed by many in the philosophy of mathematics as signif-
icant in our quest for mathematical truth. In light of Gödel incompleteness, after
all, we must eternally seek to strengthen even our best and strongest theories. Is
the linear hierarchy of consistency strength directing us along the elusive path, the
“one road upward” as John Steel [Ste13] describes it, toward the final, ultimate
mathematical truth? That is the tantalizing possibility.

Meanwhile, we do know as a purely formal matter that the hierarchy of con-
sistency strength is not actually well-ordered—it is ill-founded, densely ordered,
and nonlinear. The statements usually used to illustrate these features, however,
are weird self-referential assertions constructed in the Gödelian manner via the
fixed-point lemma—logic-game trickery, often dismissed as unnatural.

Many set theorists claim that amongst the natural assertions, consistency strengths
remain linearly ordered and indeed well ordered. H. Friedman [Fri98] refers to “the
apparent comparability of naturally occurring logical strengths as one of the great
mysteries of [the foundations of mathematics].”

Commentary can be made about this article on the first author’s blog at
http://jdh.hamkins.org/nonlinearity-in-the-hierarchy-of-consistency-strength.
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Andrés Caicedo says,

It is a remarkable empirical phenomenon that we indeed have com-
parability for natural theories. We expect this to always be the
case, and a significant amount of work in inner model theory is
guided by this belief. [Cai11]

Stephen G. Simpson writes:

It is striking that a great many foundational theories are linearly
ordered by <. Of course it is possible to construct pairs of artificial
theories which are incomparable under <. However, this is not the
case for the “natural” or non-artificial theories which are usually
regarded as significant in the foundations of mathematics. The
problem of explaining this observed regularity is a challenge for
future foundational research. [Sim09]

John Steel writes “The large cardinal hypotheses [the ones we know] are them-
selves wellordered by consistency strength,” and he formulates what he calls the
“vague conjecture” asserting that

If T is a natural extension of ZFC, then there is an extension H
axiomatized by large cardinal hypotheses such that T ≡Con H.
Moreover, ≤Con is a prewellorder of the natural extensions of ZFC.
In particular, if T and U are natural extensions of ZFC, then either
T ≤Con U or U ≤Con T . [Ste14]

Peter Koellner writes

Remarkably, it turns out that when one restricts to those theories
that “arise in nature” the interpretability ordering is quite sim-
ple: There are no descending chains and there are no incomparable
elements—the interpretability ordering on theories that “arise in
nature” is a wellordering. [Koe11]

Let me refer to this position as the natural linearity position, the assertion that
all natural assertions of mathematics are linearly ordered by consistency strength.
The strong form of the position, asserted by some of those whom I have cited
above, asserts that the natural assertions of mathematics are indeed well-ordered
by consistency strength. By all accounts, this view appears to be widely held in
large cardinal set theory and the philosophy of set theory.

Despite the popularity of this position, I should like in this article to explore the
contrary view and directly to challenge the natural linearity position.

Main Question. Can we find natural instances of nonlinearity and illfoundedness
in the hierarchy of consistency strength?

I shall try my best.

1. Formal instances of consistency-strength nonlinearity

Let me begin by setting aside the naturality requirement (for this section only)
and reviewing as a purely formal matter that both nonlinearity and ill-foundedness
occur in the hierarchy of consistency strength. This will be established with certain
self-referential sentences constructed via the Gödel fixed-point lemma—precisely
the sentences often dismissed as unnatural. The results of this section are well
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known and have essentially become part of the mathematical logic folklore; I shall
mention several references presently.

The consistency-strength order relation at the center of the discussion is defined
as follows, where Con(T ) is the assertion “T is consistent,” expressed using a given
arithmetically expressible definition of the theory T .

Definition 1. Theory S is below theory T in consistency strength, written S ≤ T ,
if the implication Con(T ) → Con(S) is provable in a base theory, fixed for the
purpose of this relation. The theory S is strictly below T , written S < T , if S ≤ T
but not conversely; and the theories are equiconsistent, written S ≡ T , when S ≤ T
and T ≤ S, which provides a hierarchy of degrees of consistency strength.

One commonly sees Peano arithmetic PA as the base theory in arithmetic con-
texts and ZFC in set theory. Much weaker base theories, however, such as primitive
recursive arithmetic PRA, actually suffice for nearly all of the usual features one
seeks in the hierarchy of consistency strength, whether in arithmetic or set theory,
including large cardinal set theory. A strong base theory, such as ZFC, can erase
distinctions in the hierarchy that a weaker theory reveals; the iterated consistency
tower over PA, for example, with Con(PA), Con(PA + Con(PA)) and so on, is triv-
ialized in ZFC, which proves outright all those consistency statements. Meanwhile,
instances of nonlinearity are more compelling over a stronger base theory than a
weak one, since incomparability persists to weaker base theories; and so in this
article I shall adopt PA as the default base theory for arithmetic and ZFC as the
default base theory for set theory, although very little of my analysis depends on
this.

A convenient sufficient condition for the strict relation S < T , when T ex-
tends the base theory, occurs when T ` Con(S). In this case Con(T ) implies
Con(T + Con(S)), which implies Con(S), but Con(S) cannot prove Con(T ) over
the base theory, for then the base theory plus Con(S) would prove its own consis-
tency, contrary to the incompleteness theorem. This method enables one to prove
instances of the strict relation S < T without ever having explicitly to prove an
instance of nonprovability, since this part is in effect offloaded to the incompleteness
theorem. In the large cardinal hierarchy, many instances of the strict relation in
consistency strength are often proved in just this way—if there is a Mahlo cardinal
κ, for example, then Vκ is a set-sized model of ZFC with a proper class of inacces-
sible cardinals, showing the consistency of this theory, which is therefore strictly
weaker than a Mahlo cardinal.

In the research literature, not everyone is using exactly the same hierarchy of
strength; there are several closely related notions. First, of course, there is the
hierarchy of direct implication, but nearly everyone recognizes that this isn’t re-
ally what we want, for we already have numerous natural instances of nonlinearity
for direct implication, even for several completely standard large cardinal notions.
Beyond this, Per Lindstrom [Lin03] provides a well-developed account for the hier-
archy of interpretability strength, which is closely related to but not identical with
the hierarchy of consistency strength; nevertheless, much of Lindstrom’s analysis
carries over easily to consistency strength. Koellner [Koe11] similarly treats the
interpretability hierarchy in his discussion of large cardinal strength. It may be
that for most purposes including philosophical analysis we should ultimately be
using interpretability strength rather than consistency strength. These two hierar-
chies are different, however, even in the case of ZFC and Gödel-Bernays set theory
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GBC, since these two theories are equiconsistent but not mutually interpretable.
Meanwhile, Harvey Friedman [Fri98] uses the consistency-strength relation of def-
inition 1, but only for sentences over the base theory, rather than theories. John
Steel [Ste14] uses exactly the relation of definition 1. Stephen Simpson [Sim09],
however, defines the consistency-strength order as S < T ⇐⇒ T ` Con(S). This
is the sufficiency property I mentioned earlier, which suffices for the strict order
of definition 1, but Simpson’s order is not actually identical with the strict order
of definition 1—for example, Simpson’s order is not dense amongst extensions of
the base theory, since it can have nothing strictly between PA and PA + Con(PA).
To my way of thinking, we should want to analyze consistency strength through a
reflexive preorder relation S ≤ T , which gives rise to the equiconsistency degrees
via S ≡ T ⇐⇒ S ≤ T ≤ S, and Simpson’s approach does not seem to do this.
For the rest of this article, therefore, I shall proceed with the notion of consistency
strength provided by definition 1.

Theorem 2. There are statements σ and τ in the language of arithmetic with
incomparable consistency strengths over PA. That is, neither Con(PA + σ) nor
Con(PA + τ) provably implies the other over PA.

Proof. Using the double version of the fixed-point lemma, we can find distinct
sentences σ and τ , each asserting that for any refutation of the other sentence in
the theory PA + Con(PA), there is a smaller refutation of itself, one with a smaller
Gödel code. That is, σ asserts that for any proof of ¬τ in PA + Con(PA), there is
a smaller proof of ¬σ; and similarly vice versa with τ .

Neither of these sentences, I claim, is actually refutable in PA+Con(PA), since if
one of them were refutable, then one of them would have the smallest refutation, and
this would make that sentence also provably true in PA, which would contradict the
consistency of the theory PA + Con(PA). So neither sentence is actually refutable
and hence both are (vacuously) true.

Since σ is not refutable, it follows that PA+Con(PA)+σ is consistent, and so it is
also consistent with the assertion of its own inconsistency ¬Con(PA+Con(PA)+σ).
In any model of this combined theory, σ is refutable in PA+Con(PA), but since also
σ is true there, there must not be any smaller refutation of τ . Since this syntactic
situation will be provable in PA, it follows in light of what the sentences assert that
the model thinks that PA proves that σ is true and τ is false. So from Con(PA) it
follows both that Con(PA + σ) and ¬Con(PA + τ) in this model.

Similarly, since τ is not refutable, we may consider the theory PA+Con(PA)+τ
analogously, and thereby find a model in which Con(PA+τ) but ¬Con(PA+σ). So
the two sentences have incomparable consistency strength over PA, as claimed. �

In fact, we don’t need the double fixed-point method to prove theorem 2, since
it is an immediate consequence of the following stronger result, which avoids the
double fixed-points, while also achieving the incomparability for a sentence with its
negation.

Theorem 3. There is a statement η in the language of arithmetic, such that η and
¬η have incomparable consistency strengths over PA.

Proof. Let η be the Rosser sentence of the theory PA + Con(PA), that is, the
sentence asserting of itself that for any proof of η from this theory, there is a smaller
proof of ¬η, smaller in the sense of Gödel codes. The usual Rosser argument shows
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that η is neither provable nor refutable in this theory. Namely, if η is actually
provable, then because of what η asserts, we will have proved that ¬η has a proof
with a smaller Gödel code, but since the theory is consistent, none of those can be
proofs of ¬η, and we can prove this; similarly, if η were actually refutable, then
we will have proved that η is provable with a smaller code, which again would
contradict the consistency of the theory.

Since η is not provable, there is a model of PA + Con(PA) + ¬η. In light of
what η asserts, this model thinks that there is a proof of η from PA + Con(PA)
with no smaller proof of ¬η. Since the model thinks that PA can prove these
concrete syntactic facts, which suffice for the failure of η, the model thinks that PA
proves ¬η. Since Con(PA) holds in this model, it follows that this is a model of
Con(PA + ¬η) + ¬Con(PA + η).

Conversely, since η is not refutable, it follows that PA+Con(PA)+η is consistent.
By the incompleteness theorem, there is a model M of this theory that also thinks
this theory is inconsistent. So M has a proof of ¬η from PA+Con(PA), and because
η is true in the model, there must be such a proof of ¬η with no smaller proof of
η. Since PA can prove this concrete syntactic fact, which furthermore suffices to
validate η, it follows that the model thinks that PA proves η. So from Con(PA) in
this model, we must also have Con(PA + η) + ¬Con(PA + ¬η).

So we have exhibited models showing that neither the consistency statement
Con(PA+η) nor Con(PA+¬η) implies the other over PA, and so these consistency
strengths are incomparable. �

The sentences η and ¬η of theorem 3 exhibit what is known as the double-
jump phenomenon for consistency strength, which occurs when both a sentence
and its negation jump up in consistency strength. Precisely because η and ¬η have
incomparable consistency strengths, it follows that neither PA +η nor PA +¬η can
be equiconsistent with PA alone (for then they would be comparable), and so both
of them jump. Contrast this situation with the usual Rosser sentence ρ defined
with respect to PA, since this sentence ρ has no jumps—both PA + ρ and PA +¬ρ
are equiconsistent with PA itself. Meanwhile, the Gödel sentence γ has one jump,
because PA+γ is equivalent to PA+Con(PA), which has strictly higher consistency
strength than PA, but PA + ¬γ is equivalent to PA + ¬Con(PA), which remains
equiconsistent with PA.

The single and double jump phenomenon is also commonly considered for the
hierarchy of interpretative strength, as in [Koe11], but I’d like to mention a few
differences between these hierarchies. Consistency strength is closely related to in-
terpretative strength, to be sure, because if a theory T proves Con(S), then S is
interpretable in T with strictly lower interpretability strength simply by construct-
ing the Henkin model; so these instances of strong increase in consistency strength
are also instances of strict increase in interpretative strength. But the hierarchies
are not the same. To see one difference, notice that [Koe11] points out that no Π0

1

sentence can realize the no-jumping situation for interpretative strength, whereas
we have said that the Rosser sentence ρ is no-jumping in consistency strength,
and this sentence has complexity Π0

1. The difficulty for interpretation is that any
model of PA satisfying a Σ0

1 statement will think that this statement must be true
in all the models it interprets, since the very same existential instance is in effect
inserted into the interpreted models. But this problem does not arise with consis-
tency strength, since one can think an existential statement is consistent without
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yet having a specific concrete instance. With the Rosser sentence ρ, for example,
the mere consistency of the existential case ¬ρ does not cause a difficulty for the
consistency of ρ itself.

One can easily modify the argument of theorem 3 to look instead for proofs from
PA + Con(S), where S is a consistent extension of PA. The result is a sentence η
for which S+ η and S+¬η have incomparable consistency strengths. A slight gen-
eralization of this method shows in fact that the hierarchy of consistency strengths
is a dense order:

Theorem 4. If theory S has strictly weaker consistency strength than theory T ,
both extending PA, then there is a theory U of strictly intermediate consistency
strength, S < U < T . Indeed, there are two such theories U and U ′, both strictly
between S and T , but with incomparable consistency strength to each other.

Proof. Suppose that S is weaker than T in consistency strength, with both theories
extending PA. It follows that PA + Con(S) + ¬Con(T ) is consistent. Let δ be the
Rosser sentence of this theory, asserting that for any proof of δ from this theory,
there is a smaller proof of ¬δ. The usual Rosser argument shows that δ is neither
provable nor refutable in this theory.

Because δ is not provable, we have a model of Con(S) +¬Con(T ) +¬δ. In light
of what ¬δ asserts, this model thinks there is proof of δ with no smaller proof of
¬δ. Since this concrete situation can be verified by PA, the model thinks that PA
proves ¬δ, and so this is a model of Con(S + ¬δ) + ¬Con(S + δ) + ¬Con(T ).

Conversely, because δ is not refutable, the theory PA+Con(S)+¬Con(T )+δ is
consistent, and so there is a model of this theory, and we may furthermore assume
that the model thinks this theory is inconsistent. So this model will think that ¬δ
is provable from PA + Con(S) +¬Con(T ), and since δ is true here, it must be that
the smallest proof of ¬δ has no smaller proof of δ. The model thinks that PA can
prove these concrete syntactic facts, which suffice to validate δ, and so the model
thinks that PA proves δ. Therefore Con(S) implies Con(S + δ) and ¬Con(S +¬δ)
here. So this is a model of Con(S + δ) + ¬Con(S + ¬δ) + ¬Con(T ).

To prove the theorem, let U be the theory T ∨ (S + δ), meaning the theory with
all sentences of the form τ ∨ (σ ∧ δ), for any τ ∈ T and σ ∈ S. The models of U
are precisely the models of T and the models of S + δ, and so Con(U) is simply
the disjunction Con(T )∨Con(S + δ). Similarly, let U ′ be the theory T ∨ (S +¬δ),
which has Con(U ′) = Con(T ) ∨ Con(S + ¬δ). It follows easily that U and U ′ are
both at least weakly intermediate in consistency strength, S ≤ U,U ′ ≤ T .

We complete the proof by showing that U and U ′ are incomparable in consistency
strength, which also implies they are both strictly intermediate between S and T .
For this, observe that the first model above had Con(S+ δ) and hence Con(U), but
neither Con(S + ¬δ) nor Con(T ) and hence not Con(U ′). The second model, in
contrast, had Con(S+¬δ) and hence Con(U ′), but neither Con(S+ δ) nor Con(T )
and hence not Con(U). So neither Con(U) nor Con(U ′) provably implies the other,
and so these theories are incomparable in consistency strength. �

Let me conclude this section by presenting H. Friedman’s [Fri98] method of
establishing density and incomparability in the hierarchy of consistency strength,
proving it as a consequence of density in the simpler context of the derivability
hierarchy, that is, in the Lindenbaum algebra, which for Π0

1 assertions, he proves, is
isomorphic to the hierarchy of consistency strength. Recall the Lindenbaum algebra
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over a base theory T , the algebra of derivability (or direct implication), for which
σ ≤ τ when T ` τ → σ. This is a Boolean algebra modulo the induced equivalence
of provable equivalence. The strict order σ < τ holds when σ ≤ τ but τ 6≤ σ.

Lemma 5. The Lindenbaum algebra over any computably enumerable base theory
T extending PA is dense. That is, if σ < τ with respect to derivability over T , then
there is a sentence θ with σ < θ < τ . If σ and τ are Π0

1, then there is a Π0
1 such

sentence θ.

Proof. Since σ < τ , the theory T + σ + ¬τ is consistent. Since this provides a
consistent computably axiomatizable theory of arithmetic, it is incomplete. Let ρ
be any statement independent of this theory, such as the Rosser sentence, which
has complexity Π0

1. Let θ = σ∧ (τ ∨ρ). So σ ≤ θ ≤ τ . But since we have models of
T + σ+¬τ + ρ and T + σ+¬τ +¬ρ, which are therefore models of T + σ+¬τ + θ
and T + σ + ¬τ + ¬θ, respectively, it follows that σ < θ < τ , as desired. Note that
if σ and τ have complexity Π0

1, then so does θ. �

Next, Friedman transfers the consistency strength hierarchy to the Lindenbaum
algebra simply by observing that every sufficient Π0

1 statement is a consistency
statement.

Lemma 6. If θ is any Π0
1 sentence with Con(PA) ≤ θ, then θ is PA-provably

equivalent to Con(PA + η) for some Π0
1 sentence η.

Proof. Using the fixed-point lemma, we can form a sentence η that asserts of itself,
“for any counterexample to θ, there is a smaller number coding a proof of ¬η.”
Assume PA+θ, and hence also Con(PA). If Con(PA+η) fails, then there is a proof
of ¬η from PA. Since θ holds, this proof is coded below any counterexample to θ,
and so we can also prove η, contrary to Con(PA). So Con(PA+η) ≤ θ. Conversely,
if θ fails yet Con(PA+η) holds, then there is a counterexample to θ, but no smaller
proof of ¬η, and from this we can prove ¬η, contrary to assumption. �

The argument works not just with PA, but with any sufficient base theory.
This lemma has a consequence I find surprising, namely, that every computably
enumerable theory extending the base theory is equiconsistent with an individual
sentence, since Con(T ) is a Π0

1 sentence and implies Con(PA), and so by the lemma
Con(T ) is equivalent to Con(PA+η) for some sentence η. For example, even though
the theory ZFC is not finitely axiomatizable, nevertheless there is an arithmetic
sentence ζ that is equiconsistent with ZFC over PA.

Using lemma 6, Friedman deduces the following consequence, which shows how
the fundamental nature of consistency strength must parallel that of direct impli-
cation.

Theorem 7. The hierarchy of consistency degrees over PA is isomorphic to the
derivability algebra over PA of Π0

1 sentences at or above Con(PA).

In particular, since the Lindenbaum algebra is dense by lemma 5, it follows that
the consistency strength hierarchy also is dense; and since it is known that there are
incomparable Π0

1 statements (incomparable with respect to provable implication),
it similarly follows that there are incomparable consistency strengths.
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2. Natural instances of consistency-strength nonlinearity

Nobody likes the examples of nonlinearity and illfoundedness provided in sec-
tion 1. Those sentences are viewed as unnatural—weird self-referential logic-game
trickery. Therefore, let me now embark in earnest on the hard task I have set out
for myself. Everyone seems to think it is impossible, but I shall try my best.

The hard task. To provide natural, or at least nearly natural,
instances of nonlinear incomparability and ill-foundedness in the
hierarchy of consistency strength, particularly in the hierarchy of
large-cardinal consistency strength.

To begin, consider the assertions that there are some finite number of inaccessible
cardinals.

“There are n inaccessible cardinals.”

As n increases, these statements increase strictly in consistency strength. But there
is a subtlety here, concerning how we describe the number n. Must we write out n
as 1 + 1 + · · ·+ 1? That would be odd to insist upon if n were very large.

Suppose that we had said instead that

“The number of inaccessible cardinals is at least the number of
prime pairs.”

This sentence surely makes a large cardinal existence assertion, but since it is an
open question exactly how many prime pairs there are or whether there are infinitely
many, perhaps the consistency strength of this assertion is not clear. Even in more
concrete cases such as “there are 2100 inaccessible cardinals,” we would ordinarily
describe this number in effect by providing a method of computing it—multiply
2 by itself 100 times. More generally, we might want to say that “there are n
inaccessible cardinals,” where n is defined as the output of a certain explicitly
provided computational procedure. Allowing such statements, however, opens the
door wide to nonlinearity in the hierarchy of large cardinal consistency strength.

Theorem 8. Amongst the large cardinal existence assertions of the form,

“There are n many inaccessible cardinals,”

where n is the output of a specific computational processs, there are instances of
incomparable consistency strength. Indeed, there is a computable function f for
which the statements

“there are f(n) inaccessible cardinals”

are strongly independent with respect to consistency strength.

A list of statements is strongly independent in consistency strength when no
nontrivial implication is provable between Boolean combinations of the consistency
statements. This is equivalent to asserting that the consistency statements freely
generate the free countably infinite Boolean algebra.

The proof of theorem 8 will rely on an elementary variant of the universal algo-
rithm, as follows.

Theorem 9. For any consistent theory T extending ZFC, there is a Turing machine
program e, which we can write down, such that for any partial function f ... N→ N,
there is a model of the theory, such that if we run the program e on input n inside
the model, then for n ∈ dom(f) the result is f(n), but if n /∈ dom(f), then the
program does not halt.
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Proof. The program e searches for a proof from T of a statement of the form “the
function computed by e is not precisely the function determined entirely by these
specific input/output pairs: (k0, n0), . . . , (kr, nr).” If such a proof is found, then
the program proceeds to halt on exactly those inputs ki giving output ni; for inputs
not of the form ki on that list, the program loops endlessly. We use the Kleene
recursion theorem in order to know that indeed there such a program e defined by
this self-referential recursion.

In the standard model, I claim, the program will never halt. If it ever did halt,
then it will have done so because it found such a proof, but then proceeded to
halt anyway on exactly those inputs with exactly those outputs. By inspecting the
computation, we would be able to prove this is the behavior, and this would show
that T is inconsistent. So in the standard model, there are no such proofs to be
found.

But precisely because of this, it follows that for any particular desired finite list of
input/output behavior (k0, n0), . . . , (kr, nr), it is consistent with T that the program
e halts on these ki with output ni, and diverges on all other input. Therefore, for
any partial function f ... N → N, it is finitely consistent with T that the operation
of e is in accordance with f . And so the whole theory is consistent. So there is
a model M |= T in which the function computed by e is altogether in accordance
with f on standard input n. �

Kindly notice that if in some model of arithmetic the program e should happen
to halt on one input n and not on another input m, then this will be provable by
PA in the model. The reason is that if the program halts on n, then it was because
a certain proof was found involving an input/output lookup table, which did not
include m. And so in that model PA will be able to prove that the program does
not halt on m.

Theorem 9 is part of a long history, perhaps tracing back to Mostowski [Mos60]
and Kripke [Kri62]. The particular proof above follows the presentation on my blog
post [Ham16b], following a suggestion of Vadim Kosoy in the comment section there.
The theorem is mainly to be viewed, however, as a baby version of the universal
algorithm theorem, due to W. Hugh Woodin [Woo11]; but see my simplified proof
in [Ham18], and also [Ham17a; Ham17c], [BE17; Bla17]. Shavrukov made similar
arguments in 2012 private communications under the slogan “On risks of accruing
assets against increasingly better advice,” and he pointed out connections with
[Ber90] and [Jap94]. Albert Visser has pointed out a similar affinity with the
classical proof-theoretic ‘exile’ argument (for example, see ‘refugee’ in [AB04]).
Further set-theoretic analogues of the universal algorithm have been explored in
[HW17; HW21]. The main difference between theorem 9 and the full universal
algorithm (as in [Ham18] etc.) is the remarkable extension property of the full
version. Namely, the algorithm always produces a finite sequence, but in any model
of arithmetic M in which the sequence produced is s, then for any finite extension
t of that sequence in M , there is an end-extension of M to a model N in which
the computed sequence is t. Since I haven’t seemed to need this extension property
for the applications of this article, I have proceeded with just the baby version of
theorem 9.

Proof of theorem 8. Let us now use the universal computable function to establish
nonlinearity in the large cardinal hierarchy. Let f be the universal computable
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function, computed by the algorithm as described in theorem 9 using any consistent
theory T extending ZFC plus the claim that there are infinitely many inaccessible
cardinals. Let σn be the statement, “there are f(n) many inaccessible cardinals.”
We interpret the statement as asserting also that f(n) exists. We want to show
that Con(ZFC +σn) does not ZFC-provably imply Con(ZFC +σm) for any n 6= m.
For this, we need a model of ZFC satisfying the first consistency statement, but
not the second. By the universality theorem 9, there is a model M of T in which
f(n) < f(m) and both are defined. Since the model M has what it thinks is
infinitely many inaccessible cardinals, it also has at least f(n)+1 many. By cutting
the universe to Vκ at the (f(n)+1)th inaccessible cardinal, the model thinks that the
theory “ZFC+f(n) < f(m) and there are exactly f(n) many inaccessible cardinals”
is consistent. Since this theory does not prove its own consistency, there is a model
U inside M that thinks fM (n) many inaccessible cardinals are consistent with ZFC,
but not fM (n)+1 many. That model must have NU end-extending NM , and so the
operation of e on n and m will agree with M , and so fU (n) = fM (n) < fU (m) =
fM (m). So U is a model of ZFC in which Con(ZFC + σn) + ¬Con(ZFC + σm), as
desired. �

The same argument works with Mahlo cardinals, measurable cardinals, and sim-
ilarly with almost any of the usual large cardinal notions.

Perhaps one is tempted to object to theorem 8 on the grounds that the program
computing f is not provably total, and this could cause ambiguity in the meaning
of the statement “there are f(n) inaccessible cardinals” if the computation of f(n)
does not halt. In theorem 8, I had interpreted the statement as false in that case.
Indeed, f(n) is defined only in models of ¬Con(T ), which might be considered
rather strange to consider if we are interested in T as an aspirational large cardinal
theory.

This objection is easily addressed, however, simply by using slightly different
statements. Namely, let us consider the sentences asserting “there are as many
measurable cardinals as the running time of program e on input n.” This sentence
is naturally interpreted whether or not the program halts on input n; the number of
asserted measurable cardinals will be finite if e halts on n and otherwise infinite. In
the natural case for the die-hard large cardinal set theorist, therefore, who consider
both T and Con(T ) to be true, the sentences will all assert the existence of infinitely
many inaccessible cardinals. And yet, still they will have incomparable consistency
strengths.

Theorem 10. Amongst the large cardinal existence assertions of the form,

“There are as many measurable cardinals as the running time of
this specific computational process,”

there are instances with incomparable consistency strength. Indeed, there is a com-
putable function f for which the statements about the running time of the compu-
tation of f(n) are strongly independent with respect to consistency strength.

Proof. We proceed essentially the same as in theorem 8. Let e be the program for
the universal function f of theorem 9 defined relative to the theory T = ZFC+“there
are infinitely many measurable cardinals,” and let τn be the statement “there are
as many measurable cardinals as the running time of e on input n.” If n 6= m, then
there is a model M |= T in which e halts on n, but not on m. If t is the running
time of e on n, then we may cut off M at the (t+ 1)th measurable cardinal to see
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that the theory “ZFC + e halts on n in t steps but fails to halt on input m and
there are exactly t+ 1 many measurable cardinals” is consistent. Since this theory
does not prove its own consistency, there is a model U inside M that thinks t many
measurable cardinals are consistent with ZFC, but not t+1 many. That model must
have a N end-extending NM , and so the operation of e on n will still halt by time t
and m will not. So U is a model of ZFC in which Con(ZFC+τn)+¬Con(ZFC+τm),
as desired. �

An exactly similar argument will apply with statements of the form

“There are as many supercompact cardinals as the sizes of squares
in the plane that can be covered by tilings using this specific set of
polygonal tiles,”

and similarly with many other such kinds of assertions, using any provably m-
complete decision problem.

3. Natural arithmetic instances of nonlinearity in consistency
strength

A careful reader will recognize that many of the arguments of the previous section
have little actually to do with large cardinals, and the essential ideas can be used to
exhibit natural instances of ill-foundedness and incomparability in the consistency
strengths of simple arithmetic assertions.

Theorem 11. Amongst the assertions of the form,

“This specific computational process halts,”

there are instances of incomparable consistency strength. Indeed, there are instances
whose consistency strengths are double-jumping. Furthermore, there is a program e
for which the statements “e halts on input n” are strongly independent with respect
to consistency strength.

Proof. Since every Σ0
1 statement is provably equivalent to the halting of a certain

computational process, the existence of double-jumping statements of this form is
an immediate consequence of theorem 3, which provided a Π0

1 sentence η, so ¬η is
Σ0

1.
But let me also argue directly, using the universal computable function f de-

scribed in theorem 9. The universal property of f implies that it is consistent with
LC that e halts exactly on any desired finite set of n and only on those numbers.
Consider any n 6= m. There is a model of LC in which e halts on n, but not on
m. In this case, the model thinks that it is consistent with PA that e halts on
n, but inconsistent that it does so on m, since the reason that it halted on n was
because of a specific list of numbers, which did not include m, and in the model,
PA can prove that that list is what arises in the computation of f . So we have a
model of PA + Con(PA + e halts on n) +¬Con(PA + e halts on m). And similarly
in the model where e halts only on m. So these two statements have incomparable
consistency strengths.

We can argue similarly that these statements are strongly independent. The
consistency assertions for any nontrivial Boolean combination of the statements is
determined by the halting pattern of e on the finite set of numbers m mentioned in
the expression. And for any n that is not mentioned, we can make models where
the original pattern of halting is the same, except that e also halts on n, or does not
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halt on n, respectively. So both the consistency of this statement or its negation
can be added to the expression consistently, as desired. �

I should like specifically to call attention to the fact that the assertions used in
theorem 11 express instances of halting, rather than non-halting. It is an easy mat-
ter to show that every consistency assertion Con(T ) for a computably enumerable
theory T is equivalent to a statement asserting that a certain program does not
halt on a certain input—we need only consider the algorithm that searches for a
proof of a contradiction in T and halts when such a proof is found. So the assertion
that this program does not halt is provably equivalent to Con(T ), and therefore
has consistency strength strictly exceeding T .

A similar observation reveals the tight intermingling of the two meanings of
‘undecidable,’ namely, the undecidability of a decision problem versus the undecid-
ability of a sentence in a theory.

Theorem 12. Suppose that A is a computably enumerable nondecidable decision
problem.

(1) For any consistent theory extending PA, there are true instances of n /∈ A
that are independent of that theory.

(2) Furthermore, the true assertions of n /∈ A are not bounded in consistency
strength by any consistent theory, including any consistent large cardinal
hypothesis.

Proof. Suppose A is a computably enumerable nondecidable decision problem, and
consider any consistent extension S of PA. If all true instances of n /∈ A were
provable in S, then we would have a decision procedure for A. Namely, by day we
run the enumeration algorithm of A, learning more of the positive instances; by
night, we search for proofs in S that n /∈ A, for the negative instances. Since S
is consistent and PA proves any true instance of halting, it follows that S can be
trusted when it proves n /∈ A. Since A is undecidable, this process must fail as a
decision procedure, and so there are n /∈ A for which this is not provable in the
theory S.

Consider now any consistent computably enumerable theory T , such as any
consistent large cardinal theory. By applying the previous observation with the
theory PA + Con(T ), we see that there are instances n /∈ A for which this is not
provable in PA + Con(T ). So there is a model of PA in which Con(T ) + (n ∈ A).
Since n ∈ A implies that PA proves it, the model thinks that PA + (n /∈ A) is
inconsistent. So this is a model of PA in which T is consistent, but PA + (n /∈ A)
is not, showing that the consistency strength of the assertion n /∈ A is not bounded
by T , as claimed. �

Thus, every computably enumerable computably undecidable set is saturated
with logical undecidability and nontrivial consistency strength. By (2), the true
assertions of n /∈ A can have no largest instance of consistency strength. From this,
it follows that either there is incomparability in consistent strength amongst these
statements, or else the statements form a linear hierarchy of consistency strength,
not bounded above by any given consistency strength.

Recall that a computably enumerable set A ⊆ N is said to be m-complete, if for
every computably enumerable set B there is a computable total function f : N→ N
such that b ∈ B ↔ f(b) ∈ A. For example, the halting problem, the word problem
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for groups, the nontiling problem, and many other problems are well known to be
m-complete. Meanwhile, observation 15 below will show that it is a strictly stronger
hypothesis about a program that it enumerates a PA-provably m-complete set, and
strictly stronger still to assume that the enumerated set admits specific provable
reductions f from the familiar m-complete sets.

Theorem 13. Suppose that A is any computably enumerable m-complete decision
problem.

(1) If A is PA-provably m-complete, with a provable reduction of the halting
problem, then amongst the true statements n /∈ A, there are instances
strictly exceeding any given consistency strength.

(2) But even without that extra provability assumption, amongst the true as-
sertions n /∈ A there are instances with incomparable consistency strength,
and instances of double-jumping consistency strength.

(3) Amongst the consistent statements n ∈ A, there are instances of incompa-
rable consistency strength and of double-jumping consistency strength.

(4) Within both kinds of statements n /∈ A, n ∈ A, there are effective enumer-
ations that are strongly independent in consistency strength.

Proof. For statement (1) only, we assume that A is provably m-complete, with
a provable reduction from the halting problem. For any computably enumerable
theory T , let eT be the program that searches for a proof of a contradiction in T ,
halting only when found. By the reduction of the halting problem to A, we get a
number n such that eT halts if and only if n ∈ A, provably in PA. So Con(T ) is
provably equivalent to the assertion n /∈ A, which therefore has consistency strength
strictly exceeding T .

For the rest of the statements, let us now drop the extra assumption about
provable m-completeness. We now assume only that A is actually computably
enumerable and m-complete. Let π be a specific computable function that is a re-
duction to A of the halting problem. Consider a version of the universal computable
function f , as in theorem 9, but defined relative to the theory PA + Con(ZFC)+“π
is a reduction of the halting problem to A.” The proof of theorem 9 shows that
there is a computable procedure e such that for any n 6= m, there is a model of
this theory in which e halts on n but not m, and another in which e halts on m
and not n. In the first case, we’ll have π(e, n) ∈ A, π(e,m) /∈ A and in the second
case vice versa. Because of the way e is defined, if it halts on one number but not
another, then in such a model it will be thought inconsistent that it could halt on
the other number. Thus, the statements of the form π(e, n) /∈ A are incomparable
in consistency strength, and indeed these statements form a strongly independent
family with respect to consistency strength, just as in theorem 11. Furthermore,
any one of these statements is double-jumping, because, once π(e, n) is in A, then
it is inconsistent for it to be out of A, and if it is out of A, but another number
is in A, then it is inconsistent to be in A. This establishes statement (2), and the
part of 4 for assertions of the form n /∈ A.

The rest of the claims, statement (3) and the part of (4) for n ∈ A, are proved
by essentially the same argument, which exhibits a certain symmetry as to whether
we were asserting membership or nonmembership of π(e, n) in A. �

Corollary 14.

(1) Amongst assertions of the form
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“This specific set of polygonal tiles admits a tiling of the plane”
there are consistent instances strictly exceeding any given consistency strength.

(2) There are such assertions with incomparable consistency strength.
(3) There are such assertions having incomparable consistency strength with

their own negations—both the statement and its negation jump in consis-
tency strength.

(4) There is an effective enumeration of finite tile sets t0, t1, . . . , such that the
assertions “tile set tn admits a tiling of the plane” have strongly independent
consistency strengths.

Proof. The tiling problem is provably m-complete, with a provable reduction of the
halting problem. �

We can just as easily provide corresponding results for statements of the form

“this specific diophantine equation p(~x) = 0 has no solution in the
integers,”

where p is explicitly provided as a polynomial over the integers. Such statement are
not bounded in consistency strength by any consistent theory, and there are specific
instances with incomparable consistency strength and double-jumping consistency
strength. There is a particular integer polynomial p(~x, y) for which the statements
“p(~x, n) = 0 has a solution in the integers,” as n varies, have strongly independent
consistency strengths.

We can provide similar results for assertions such as

“this specific finite group presentation is the trivial group”

or

“this cell in this specific Game of Life position will eventually be-
come alive.”

And so on. In each case, there are specific such statements with incomparable
consistency strength, with double-jumping consistency strength, and schemes of
such statements with strongly independent consistency strength.

What I take these arguments to show is that there is pervasive nonlinearity at
every level of the consistency-strength hierarchy, and this is a direct consequence of
the difficulty of interpreting even the names of natural numbers. We can describe
numbers, even specifying them by concrete computable procedures, but our base
theory may just not settle the question of which number is larger, and this leads
directly and almost immediately to incomparable consistency strengths.

Meanwhile, regarding the difference between being m-complete and being prov-
ably m-complete, or having provable reductions of specific computably enumerable
sets, let me prove that indeed these are not the same.

Observation 15.

(1) There are m-complete computably enumerable sets that are not PA-provably
m-complete.

(2) There are PA-provably m-complete sets A, for which none of the usual m-
complete sets B have a specific reduction function that is PA-provably a
reduction of B to A.

Proof. The halting problem is, of course, a PA-provably m-complete computably
enumerable set. Consider the computably enumerable set A, which enumerates
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the halting problem, unless it happens to find a proof of a contradiction in some
fixed strong theory T , in which case it enumerates every number into A, spoiling
the set. If T is actually consistent, then this algorithm will enumerate the halting
problem, which is m-complete. But this set is not PA-provably complete, since it
is consistent with PA that ¬Con(T ), in which case the set will be all of N and
therefore not m-complete. This proves statement (1).

For statement (2), let us simply modify the previous algorithm, so that when
the proof of a contradiction in T is found, the program enumerates all numbers
up to the code of that proof into the set, but then starts over above this point by
enumerating a shifted copy of the halting problem. In any model of PA, this set
will either be the halting problem or a shifted copy of the halting problem (with
a filled-in block below), and hence m-complete. So we can prove in PA that this
algorithm enumerates an m-complete computably enumerable set. But there will
be no particular reduction function from the usual halting problem (or any of the
other commonly considered m-complete sets) that we can prove in PA is a reduction
to A, since it is consistent with PA that every standard number is in A, and so we
will get wrong answers for the instances of provable nonhalting programs in such a
model. �

It it very natural to inquire whether one can prove theorem 13 under the weaker
assumption only that A is computably enumerable and undecidable, rather than m-
complete. Theorem 12 gets part of the result, but does not achieve incomparability
in the consistency assertions.

Question 16. Does every computably enumerable noncomputable set A admit
statements n /∈ A of incomparable consistency strength?

The answer is no, proved by Uri Andrews after a talk I gave on the topics of this
article for the Madison Logic Seminar.

Theorem 17 (Uri Andrews). There is a c.e. undecidable set A, which is Turing
equivalent to the halting problem, but for which the assertions n /∈ A are linearly
ordered by consistency strength. Also the assertions n ∈ A are linearly ordered by
consistency strength.

Proof. For any c.e. undecidable set I ⊆ N, let r =
∑
n∈I

1
2n be the real number

having binary bit 1 in the places of I. Let A be the rational cut determined by r,
the set { q ∈ Q | q < r }. Let us assume we have naturally encoded rational numbers
with natural numbers. The set A is c.e., because as natural numbers are enumerated
into I, we learn improved lower bounds to r and can enumerate the corresponding
rational numbers into A. The set A is Turing equivalent to I, since with I as an
oracle we can compute r well enough so as to answer definitively about any given
rational number; and conversely with A as an oracle we can compute I. So by
taking I to be Turing complete we shall have A Turing equivalent to the halting
problem.

The key thing to notice about A, is that for rational numbers, if p < q and
q ∈ A, then p ∈ A. Equivalently, p < q and p /∈ A implies q /∈ A, and this will be
provable in PA. So there is a provable linear relation about any two nonmembers
of A. The consequence of this is that the assertions p /∈ A and q /∈ A cannot be
incomparable in consistency strength, since any model of the former is necessarily
a model of the latter, and so Con(PA + p /∈ A) implies Con(PA + q /∈ A). So the
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nonmembership assertions p /∈ A are linearly ordered by consistency strength. An
essentially similar argument works with the positive assertions p ∈ A. �

In light of theorem 12, it follows that the consistency strengths of the assertions
p /∈ A for the set A mentioned in the proof of theorem 17 form a linear order of
height ω. And the consistency strengths of the statements p ∈ A form a linear
hierarchy of order type ω∗.

4. Natural instances of ill-foundedness and incomparability via
cautious theory enumerations

Let me now present another huge class of examples. Imagine that we believed in
a certain computably enumerable theory, such as PA, ZFC, or ZFC plus large cardi-
nals, whose axioms we intended to enumerate, but cautiously. By doing so, we can
often enumerate the theory in a sensible, natural manner, but with a strictly lower
consistency strength or with incomparable consistency strengths. These cautious
enumeration theories therefore provide natural instances both of ill-foundedness
and nonlinearity in the hierarchy of consistency strength.

As a general umbrella term, I shall say that one has a cautious enumeration of a
theory, if one is enumerating the axioms of the theory according to a procedure that
will continue as long as one hasn’t encountered a certain kind of contrary indicator,
a reason to doubt the truth of the theory. Different cautious enumerations of a
theory will arise depending on the specific contrary indicator that is required to
halt the enumeration.

I shall also use the term to refer to specific natural theories. For example, let the
cautious enumeration of ZFC be the enumeration of ZFC that continues as long as
we have not yet found a proof in what we have enumerated so far that ZFC is incon-
sistent. I denote the resulting theory by ZFC◦. In order to halt the enumeration,
we do not require an explicit contradiction in ZFC, but rather only a proof that
there is such a contradiction. If Con(ZFC) is actually true, as we have assumed,
and in particular, if Con(ZFC) is consistent with ZFC, then no confounding proof of
inconsistency will ever be found. As a theory, therefore, the cautious enumeration
ZFC◦ actually has all the same axioms as ZFC; they are the same theory, but with a
different manner of enumeration. Thus, this situation reveals an intentional aspect
of the consistency strength hierarchy, for the consistency strength of a theory T is
not determined extensionally by the theory itself, by the set of sentences that are
actually in T , but rather by how the theory has been described, in order to form
the assertion Con(T ).

I find the cautious enumeration to be both sensible and realistic—in this sense
it is a natural theory—for if we were actually enumerating ZFC and a proof was
pointed out to us along the way that the theory we have already committed to
proves the full ZFC theory inconsistent, then we would have ample reason to pause
and reflect on whether we should continue with the enumeration. I think we would
pause the enumeration right then and reconsider. The cautious enumeration is
what we would actually do—so it is a natural theory.

Theorem 18. The cautious enumeration ZFC◦ is an alternative computable enu-
meration of ZFC, with a strictly lower consistency strength than ZFC.
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Proof. We have already explained that if Con(ZFC) is consistent with ZFC, then
the cautious enumeration ZFC◦ will never encounter the confounding proof of in-
consistency, and so it will fully enumerate all the ZFC axioms. Meanwhile, I claim
that the cautious theory ZFC◦ has a strictly weaker consistency strength than
ZFC. We can easily prove, of course, that ZFC◦ ⊆ ZFC and consequently that
Con(ZFC) → Con(ZFC◦). But if ZFC + Con(ZFC) is consistent, then there is a
model of the theory ZFC + Con(ZFC) +¬Con(ZFC + Con(ZFC)). In such a model
M , while ZFC is consistent, nevertheless there will be a proof from ZFC that it is
not, and so M will think that ZFC◦ consists of only finitely many axioms of ZFC.
Since we can prove even in PA that ZFC proves each of its finite subsets is consis-
tent, it follows that M thinks that ZFC proves Con(ZFC◦). By the incompleteness
theorem, it thinks ZFC + ¬Con(ZFC) is consistent, and so it can build a model of
ZFC in which Con(ZFC◦) holds, but not Con(ZFC). So the cautious theory ZFC◦

is strictly weaker than ZFC in consistency strength, even though they enumerate
the same theory. �

It might be a little surprising that a theory can have a strictly weaker consis-
tency strength over a base theory than the base theory itself. But it shouldn’t be
too surprising, since there is room between ZFC and ZFC + Con(ZFC) for other
consistency statements, and that is what is going on here. The theorem amounts to
the claim that ZFC+Con(ZFC◦) is a strictly weaker theory than ZFC+Con(ZFC).

Consider next the doubly cautious enumeration ZFC◦◦, where we enumerate the
ZFC axioms as usual, but continue only as long as we have not yet found a proof in
ZFC that ZFC is inconsistent or even a proof in ZFC that there is such a proof of
inconsistency. In other words, we stop the enumeration when we find a proof from
ZFC either of ¬Con(ZFC) or of ¬Con(ZFC + Con(ZFC)).

Theorem 19. The doubly cautious enumeration of ZFC is an alternative com-
putable enumeration of ZFC, with strictly weaker consistency strength than even
the cautious enumeration.

Proof. Since ZFC◦◦ is a subtheory of ZFC◦, we easily prove in ZFC that Con(ZFC◦)
implies Con(ZFC◦◦). To show the implication is not reversible, consider a model of
ZFC+Con(ZFC)+Con(ZFC+Con(ZFC))+¬Con(ZFC+Con(ZFC+Con(ZFC))).
In this model, because Con(ZFC+Con(ZFC)) holds, the cautious enumeration will
never find a proof of ¬Con(ZFC) from ZFC, and so it will enumerate the full
theory, ZFC◦ = ZFC. But because the models believes ¬Con(ZFC + Con(ZFC +
Con(ZFC))), it will find a proof from ZFC of ¬Con(ZFC + Con(ZFC)). In other
words, it will find a proof from ZFC that there is a proof from ZFC that ZFC is
inconsistent. Thus, the doubly cautious enumeration will find its stopping point,
and so M thinks ZFC◦◦ is a finite fragment of ZFC. So it thinks that ZFC◦ proves
Con(ZFC◦◦). Since by Con(ZFC) it thinks ZFC◦+¬Con(ZFC◦) is consistent, it can
therefore build a model of ZFC in which Con(ZFC◦◦) holds, but not Con(ZFC◦).
So the doubly cautious theory ZFC◦◦ is strictly weaker in consistency strength than
the cautious theory ZFC◦. �

We can obviously iterate this to the triply cautious enumeration, and so on,
resulting in an effective list of alternative enumerations of ZFC, all enumerating
exactly the same full ZFC theory, but doing so with progressively weaker consistency
strengths.

· · · < ZFC◦◦◦ < ZFC◦◦ < ZFC◦ < ZFC



18 DRAFT—COMMENTS WELCOME, PLEASE DO NOT DISTRIBUTE

Thus, we have ill-foundedness in consistency strength even amongst the enumera-
tions of the same ZFC theory. And all these enumerations are quite sensible, since
if we believe in ZFC, then the discovery that it is provably inconsistent or that
it is provably provably inconsistent would surely make us pause and reflect. So I
find this to be a natural instance of ill-foundedness in the hierarchy of consistency
strength.

One might also be curious about another slightly less cautious enumeration of
ZFC, what I call the stop-when-hopeless enumeration ZFC⊗, where we enumerate
ZFC as usual, but continue adding axioms only so long as we have not found
any explicit contradiction yet in what has been enumerated. If ZFC is consistent,
then no such contradiction will ever be found, and so the resulting theory ZFC⊗

has all the same axioms as ZFC. Is this theory also strictly weaker in consistency
strength than ZFC? The answer is no, I claim, the stop-when-hopeless enumeration
ZFC⊗ is equiconsistent with ZFC. Since ZFC⊗ is provably a subtheory of ZFC,
we can easily prove that Con(ZFC) → Con(ZFC⊗). Conversely, if we are in a
model of ZFC in which ZFC⊗ is consistent, then the enumeration process must
not ever have stopped, and so it is the same theory as ZFC. So in ZFC, we can
prove Con(ZFC)↔ Con(ZFC⊗). So the stop-when-hopeless enumeration offers no
advantage in consistency strength.

In general, for any theories S and T , we may consider the S-cautious enumeration
of T , where we enumerate the axioms of T as long as we have not yet seen an explicit
contradiction in S. In this terminology, ZFC◦ is the ZFC + Con(ZFC)-cautious
enumeration of ZFC, and ZFC◦◦ is the ZFC +Con(ZFC)+ Con(ZFC +Con(ZFC))-
cautious enumeration of ZFC. The stop-when-hopeless enumeration ZFC⊗ is simply
the ZFC-cautious enumeration of ZFC.

Meanwhile, let me now offer several additional alternative cautious enumerations
of ZFC, each looking for a slightly different particular reason to halt the enumera-
tion, each of them sensible and compelling. Yet the resulting theories have strictly
incomparable consistency strengths, even though they all actually enumerate the
same ZFC theory.

Theorem 20. There are diverse alternative cautious enumerations of the ZFC
theory, of incomparable consistency strengths to one another and hence all strictly

weaker than ZFC. Indeed, there is an effective enumeration of theories ZFC(n), each
actually having exactly the same axioms as ZFC, but whose consistency assertions
are strongly independent, generating the countable free Boolean algebra.

Proof. Let f be the universal computable function defined relative to the theory
ZFC + Con(ZFC). This algorithm searches for a proof in that theory that f does
not agree exactly with a certain finite list of input/output pairs, and when found,
it computes exactly in accordance with that list, diverging on all other input. Let

ZFC(n) be the theory that continues enumerating the ZFC axioms as long as f(n)
has not yet halted.

Each ZFC(n) is sensible, each cautious in a slightly different and independent way,
for each of them enumerates the ZFC axioms provided a certain kind of contrary

information is not encountered. Namely, the nth theory ZFC(n) is watching to see
whether f(n) halts, and if it does, then this is a perfectly sound reason to doubt the
veracity of ZFC, because the halting of f(n) occurs only when there is a proof that
f shouldn’t behave as it did, showing that ZFC+Con(ZFC) has false consequences;
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on these grounds, ZFC(n) stops its enumeration. Meanwhile, since the program f

does not actually ever halt (in the standard model N), each theory ZFC(n) actually
has all the same axioms as ZFC. The disagreements between these theories are
merely theoretical possibilities, occurring only possibly in a nonstandard model
and even then only on nonstandard-length axioms.

The theories are bounded above in consistency strength by ZFC, simply because

each ZFC(n) is provably a subtheory of ZFC. But indeed, I claim that they are
each strictly strictly weaker than ZFC in consistency strength, for if n 6= m, then I

shall now prove that ZFC(n) and ZFC(m) have incomparable consistency strength
over ZFC. Assume n 6= m. By the properties of the universal computable function,
there is a model M of ZFC + Con(ZFC) in which f(n) halts but f(m) does not.

In this model, ZFC(n) is a finite fragment of ZFC, but ZFC(m) is fully the same as
ZFC. Since M thinks Con(ZFC), it can build a model N that it thinks satisfies
ZFC + ¬Con(ZFC). Because the function f halted at a finite stage of M , the
model N will agree with this, since NM must be an initial segment of NN . So the
computation of f on inputs n and m is the same in N as it is in M . Since we can
prove even in PA that the theory ZFC proves the consistency of any of its finite

fragments, it follows that M thinks Con(ZFC(n)) holds in N . But since ¬Con(ZFC)

also holds and f(m) does not halt, it follows that N satisfies ¬Con(ZFC(m)). So

we have a model of ZFC which thinks ZFC(n) is consistent, but not ZFC(m). This

shows that the consistency of ZFC(n) does not provably imply the consistency of

ZFC(m) over ZFC, and so all the theories have incomparable consistency strength.
It is not much more difficult to show that these consistency statements are

strongly independent and freely generate the free Boolean algebra. The point is

that for any conjunction of the statements Con(ZFC(n)) or their negations, then we

can find a model where f halts on the ns for which Con(ZFC(n)) occurs positively
in the conjunction and not on the ns that occur negatively, and this will make the
conjunction altogether true; or conversely we can find a model making it false. By
controlling which n the universal algorithm halts on, we can control exactly which
consistency statements are strong and which are weak, showing that every possible
combination of those consistency statements is nontrivial. So these statements are
strongly independent and therefore freely generate the free Boolean algebra. �

Let I be the assertion that there is an inaccessible cardinal.

Theorem 21. The cautious enumeration of ZFC + I has consistency strength
strictly between ZFC and ZFC + I. Indeed, there is an effective enumeration of
infinitely many cautious enumerations of this theory, with strongly independent in-
comparable consistency strengths, whose consistency statements freely generate the
countable free Boolean algebra.

Proof. Consider first the cautious enumeration (ZFC + I)◦ of the theory ZFC + I,
where we enumerate the axioms into this theory, including I itself, up until a stage
at which we see a proof in ZFC + I that ZFC + I is inconsistent. I should like to
emphasize again that we don’t insist on seeing an actual proof of a contradiction
from this theory, but rather merely a proof that there is one. Since the theory is
actually consistent, we have assumed, this enumeration will actually provide all of
the axioms of the full theory ZFC + I. The difficulty is that we are not able to
prove this in ZFC—we had made an extra consistency assumption to deduce it.
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The theory ZFC+I proves Con(ZFC), since we can prove that if κ is inaccessible,
then Vκ is a transitive model of ZFC. Since this proof can be made explicit, the proof
can be made using axioms that appear before any supposed (nonstandard) proof
that there is a contradiction. Therefore, Con(ZFC) will be provable in (ZFC + I)◦,
provably so, and so this cautious theory is strictly stronger than ZFC in consistency
strength. This argument extends to the iterated consistency statements Con(ZFC+
Con(ZFC)) and so on.

Meanwhile, since we have assumed that ZFC+I+Con(ZFC+I) is consistent, by
the incompleteness theorem it is consistent with ¬Con(ZFC+I+Con(ZFC+I)). In
a modelM of this theory, there will come a stage where ZFC+I proves ¬Con(ZFC+
I), which will stop the cautious enumeration. So in M , the theory (ZFC + I)◦ is a
finite fragment of ZFC + I. But we can prove in a weak meta theory that ZFC + I
proves the consistency of each of its finite fragments, and so this model thinks that
ZFC+I proves Con((ZFC+I)◦). Since M has a model of ZFC+I+¬Con(ZFC+I),
it will therefore have a model of ZFC + I + Con((ZFC + I)◦) + ¬Con(ZFC + I).
Therefore, we cannot prove in ZFC, nor even in ZFC + I, that the consistency of
the cautious theory (ZFC+I)◦ implies the consistency of ZFC+I. So it has strictly
intermediate consistency strength.

For the incomparability result, let f be the universal computable function, de-
fined relative to the theory ZFC + I + Con(ZFC + I). That is, f looks for a proof
in this theory that the input/output pattern of f does not agree with some explicit
finite list, and when found, the function f halts or diverges on its input exactly in
accordance with that list. Let (ZFC + I)(n) be the cautious enumeration in which
one enumerates the axioms of ZFC + I until a stage at which f(n) halts, at which
point the enumeration also halts. This is sensible, since the halting of f(n) is a
sensible reason not to trust ZFC + I, since the assertion that it was consistent led
to false statements.

Meanwhile, I claim these theories are incomparable in consistency strength, and
strongly independent. For any pair n 6= m, there is a model M |= ZFC + I +
Con(ZFC + I) in which f(n) halts but f(m) does not, and provably so. In such a
model, the theory (ZFC+I)(n) is a finite fragment of ZFC+I, whereas (ZFC+I)(m)

is provably the full theory ZFC+I. By the same method as earlier, therefore, we can
find a model of ZFC + I in which Con((ZFC + I)(n)) holds, but Con((ZFC + I)(m))
does not. So the two theories have incomparable consistency strength, even over
ZFC+I. Similar reasoning shows that these theories are strongly independent. �

A similar analysis applies to the axioms asserting more than one inaccessible
cardinal. Let In be the assertion that there are n inaccessible cardinals, where n
is any natural number, and more generally, let Iα be the assertion that there are
at least α many inaccessible cardinals, in their natural order, for any ordinal α.
Consider the cautious assertion of infinitely many inaccessible cardinals, namely
the axiom Iω◦ asserting that there are n inaccessible cardinals for every natural
number n up to the size of the smallest proof of a contradiction, if any, in the theory
ZFC + Iω, which asserts that there are infinitely many inaccessible cardinals. Note
that the assertion Iω◦ is a single axiom, in contrast with the cautious enumerations
of theories we considered earlier.

Theorem 22. The cautious assertion of infinitely many inaccessible cardinals is
strictly stronger than any particular finite number of inaccessible cardinals and
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strictly weaker than infinitely many.

I < I2 < I3 < · · · < Iω◦ < Iω

Proof. We have assumed that it is consistent with ZFC for there to be infinitely
many inaccessible cardinals, and so the theory ZFC + Iω◦ will actually include
every In as an axiom, and every particular instance of this will be provable. So
the consistency strength of Iω◦ will strictly exceed that of any particular In. On
the other hand, there is a model M satisfying ZFC + Iω + ¬Con(ZFC + Iω). This
model will think that Iω◦ stops the assertions at some (nonstandard) n, the stage
at which ZFC proves a contradiction from the theory ZFC + Iω. The model thinks
In+1 is true, and hence that Con(ZFC+In) and consequently that Con(ZFC+Iω◦)
is true. But since it thinks ¬Con(ZFC + Iω), this shows the cautious axiom is
strictly weaker in consistency strength. �

A similar idea will now enable us to exhibit a similar natural family of strongly
independent axioms, incomparable in consistency strength. Let f be the universal

computable function, defined relative to the theory ZFC+Iω. Let I
(k)
ω◦ be the axiom

asserting that the number of inaccessible cardinals is at least the running time of
f(k). If f(k) halts, after all, this is a reason to distrust the theory ZFC + Iω,
which asserts infinitely many inaccessible cardinals, since it is an instance where

this theory proved something false, and so in this case I
(k)
ω◦ retreats to assert only

some finitely many inaccessible cardinals. But just as proved in theorem 10, it will
turn out that these particular reasons for limiting the full axiom Iω are strongly

independent over ZFC + Iω. Each axiom I
(k)
ω◦ is being cautious about Iω in a

different, independent manner; but every one of them is quite reasonable.

Theorem 23. The cautious inaccessibility assertions I
(k)
ω◦ are pairwise incompara-

ble in consistency strength over ZFC and indeed strongly independent—their consis-
tency statements freely generate the countable free Boolean algebra. Each of these
axioms is strictly stronger than every In, but strictly weaker than Iω.

Proof. If k 6= r, then there is a model of ZFC + Iω in which f(k) is defined and
f(r) is not, and the model thinks that ZFC can prove this. The model must also

think ¬Con(ZFC + Iω), and so this is a model in which ZFC + I
(k)
ω◦ is thought

to be consistent and ZFC + I
(r)
ω◦ is not. A similar argument works with any finite

pattern for the consistency of the theories I
(k)
ω◦ , and so these axioms are strongly

independent in consistency strength. �

One might have been tempted to try to formulate a cautious version of Iω by
asserting that there are as many inaccessible cardinals as are consistent, up to ω.
That is, the assertion that for every n, if ZFC + In is consistent, then In. This
statement, however has no consistency strength at all—it is equiconsistent with
ZFC—because it is equiconsistent with ZFC that ZFC itself is inconsistent, which
trivializes the stated axiom. The cautious formulation Iω◦ , in contrast, strictly
exceeds every particular In.

Generalizing the previous temptation, let us define the provisional assertion of
any sentence A to be the assertion Con(ZFC +A)→ A. This sentence asserts that
A is true, provided that it is consistent. But again, it has no consistency strength at
all over ZFC, because it is relatively consistent with ZFC that ¬Con(ZFC), which
trivializes the provisional assertion of A.
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One might also consider a dual to the cautious enumerations. Namely, in the
petulant enumeration ZFC•, we enumerate the axioms of ZFC, but if we should
ever find an explicit proof of contradiction in our favored very strong consistent
theory T , then in a petulant rage we immediately add a contradiction also to
the current enumeration, thereby spoiling ZFC•. (The general idea is proposed
in [Fef60, theorem 7.6], attributed to Steven Orey.) This enumeration is arguably
unnatural, but it is not beyond imagination—we might consider a large cardinal set
theorist who truly and sincerely believes in the hierarchy of theories from ZFC up
through inaccessible cardinals, measurable cardinals, supercompact cardinals and
so on, but is so vested in their success that for an unexpected contradiction to arise
higher up would undermine the whole picture in a way that was too upsetting to
contemplate. Such is the personality behind the petulant enumeration.

In any case, since we have assumed that the strong theory T is actually consistent,
the petulant reaction will never come, and so the petulant enumeration results in
exactly the usual theory ZFC. The difference between ZFC and ZFC• is in this sense
merely theoretical and can only be realized in nonstandard models and even then
only with nonstandard instances of the axioms. Nevertheless, the petulant theory
is much stronger than ZFC in consistency strength, for it is equiconsistent with T .
The reason is that if Con(ZFC•), then the enumeration must never have reached
the petulant stage, and so Con(T ) as well. And conversely, from the consistency
of T we know both that ZFC is consistent and that ZFC• agrees with ZFC. So the
petulant theory ZFC• is equiconsistent with the much stronger theory T .

Let me next consider whether there is a double-jumping large cardinal hypoth-
esis. All the usual large cardinal hypotheses are single-jumping, in the sense that
they each have a strong consistency strength, but the negations of the hypotheses
do not. And yet, we know by theorem 3 that there are set-theoretic axioms with
the double-jumping feature, so that both the axiom and its negation have strictly
higher consistency strength. Is there a double-jumping large cardinal axiom? Is
there a large cardinal axiom A, so that both A and ¬A have a consistency strength
that is strictly stronger than ZFC? Consider the following tentative large cardinal
assertions:

Theorem 24. Amongst the assertions of the form:

“If this specific computational process halts, then there is an inac-
cessible cardinal”

there are instances with double-jumping consistent strengths—the sentence and its
negation have incomparable consistency strength over ZFC.

There is computable function f for which the assertions

“if f(n) halts, then there is an inaccessible cardinal”

have strongly independent incomparable consistency strengths, and each statement
is double jumping in consistency stregnth.

Proof. Let f be the universal computable function defined relative to the theory
ZFC + I + Con(ZFC + I), and let ψn be the statement, “if f(n) halts, then there
is an inaccessible cardinal.” If n 6= m, then there is a model M of ZFC + I +
Con(ZFC + I) in which f(n) halts and f(m) does not, provably so by ZFC in the
model. Because M thinks ZFC+I is consistent, it also thinks there is a model N of
ZFC+I+¬Con(ZFC+I). The computation of f on n and m is the same in M and
N , since it had already found the key decision step at a finite stage in M , whose
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natural numbers are an initial segment of those in N . Because f(n) halts in N , the
statement ψn is equivalent to I, but N thinks ¬Con(ZFC+I), so this is a model of
¬Con(ZFC +ψn). But because f(m) does not halt, the statement ψm is vacuously
true, and provably so. So the consistency of ψm amounts to Con(ZFC), which
holds as a consequence of I in N . So the statements are pairwise incomparable.
By controlling any finite pattern of halting in f , we can similarly see that the
statements are strongly independent.

To see that the statements ψn are all double-jumping, consider the model N as
above, which satisfied ¬Con(ZFC+ψn), but in light of I, it satisfies Con(ZFC+¬I)
and consequently Con(ZFC + ¬ψn), since f(n) does halt there. Conversely, if we
consider ψm in the same model, we’ve already observed Con(ZFC +ψm) in N , and
¬Con(ZFC+¬ψm) holds there, since f(m) provably does not halt. If we make this
same analysis with n instead of m, we see that ψn and ¬ψn are incomparable in
consistency strength, and so ψn is double-jumping. �

We could have used essentially any strong statement in the conclusion, instead
of asserting the existence of inaccessible cardinals; for example, we could have said
that if the computation halted, then there is a strong cardinal or a proper class
of Woodin cardinals or what have you. In addition, essentially the same argument
works with other forms of existential hypotheses. For example, statements of the
form

“If this specific diophantine equation p(~x) = 0 has a solution in the
integers, then there is a supercompact cardinal”

or the form

“If this specific set of polygonal tiles admits no tiling of the plane,
then there is an almost huge cardinal”

will also respectively exhibit instances of double-jumping and strongly independent
incomparability in consistency strength. Are these large cardinal axioms? They do
seem to make at least provisional large cardinal assertions, and in this sense they
might be regarded as large cardinal axioms. Such a provisional nature about consis-
tency, I claim, is a necessary feature of any double-jumping hypothesis, because if
a statement provably implies Con(ZFC), then it cannot be double-jumping, since
the negation of the statement would follow from ¬Con(ZFC), which has no con-
sistency strength at all. If a statement is to be double-jumping, therefore, then it
must be provisional in this way about consistency.

5. Nonlinearity in the hierarchy of transitive-model existence

Let us consider an analogue of the hierarchy of consistency strength, but where
one requires the existence of transitive models of the theory, rather than mere
consistency. In the hierarchy of transitive-model existence strength, we say that
theories are related S ≤ T if we can prove in ZFC that the existence of a transitive
model of T implies the existence of a transitive model of S.

It turns out that many of the nonlinearity results carry over almost unchanged
to this revised hierarchy.

Theorem 25. There is a computable function f for which the assertions

“there are f(n) inaccessible cardinals”
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are incomparable and strongly independent in the hierarchy of transitive-model ex-
istence.

Proof. We use the same function f as in theorem 8. If n 6= m, then as before there
is a model M with infinitely many inaccessible cardinals in which f(n) < f(m), and
both are defined. Inside this model M , let N be any ∈-minimal transitive model of
ZFC that has a transitive model with f(n) many inaccessible cardinals. It follows
by minimality that this model can have no transitive model with f(n) + 1 many
inaccessible cardinals, and so N is a model that thinks “there are f(n) inaccessible
cardinals” has a transitive model, but “there are f(m) inaccessible cardinals” does
not. Therefore the transitive model existence statement for n does not imply the
statement for m, and so these statements are all pairwise incomparable in that
hierarchy. By considering finite patterns with the universal computable function,
we similarly achieve that these statements are strongly independent. �

6. Nonlinearity in the largest-number contest

Allow me briefly to digress with a discussion of how some of these issues play
out with the largest-number contest, in which contestants compete to describe the
largest number subject to certain constraints of space and language; they write
their submissions on a standard index card, with rules specifying which characters
are allowed and how many. Perhaps one contestant fills their card naively with 9s
in decimal notation, while another describes a much larger number with factorials
9!!!!!!!! or with iterated exponentials 2^2^2^2^2^2. On even a moderately
sized card, we can describe some truly large numbers.

Although I did once supervise and judge an actual instance of the game with
competitors from the audience of a large public lecture I gave in Shanghai [Ham13],
nevertheless the largest-number contest is more often played in the imagination—it
is more a thought experiment than an actual game. The reason is that the game
leads quickly to difficult metamathematical matters, which begin to arise when
one allows number descriptions going beyond mere primitive recursive terms. For
starters, if one allows a free-form descriptive language, then one will immediately
engage with Berry’s paradox in submissions such as, “the largest number that can
be described on 3 × 5 index card, plus 1,” a description that itself fits easily on a
3× 5 index card, but by doing so serves up a paradox.

One might hope to avoid paradox by restricting the language, allowing only
precise definitions in a formal language, say, such as those of the form “the smallest
number n such that ϕ(n),” where ϕ is a formula in the first-order language of
arithmetic; or perhaps one allows submissions of the form, “the output of this
specific Turing machine computation.” These kinds of submission might initially
seem tame, but how are we to know whether indeed there is such a number n
for which ϕ(n) or whether the submitted computational procedure will ever halt?
Perhaps we should insist that submissions be accompanied by a proof that the
submission does indeed define a number. For example, such a proof is easy to
provide for definitions of the form, “the smallest number n such that ϕ(n), if any,
otherwise 17.”

And yet, the judge will have difficulty to decide who has won. Even in the case
where the language is restricted to primitive recursive terms of the form:

googol plex bang bang stack

or
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googol stack bang plex plex,1

and so on, then it is an open question whether in the general case there is any
feasible algorithm to determine the larger number; see [Ham17b].

There is no computable procedure at all to determine whether submissions of the
form “the running time of this computation” are legitimate submissions, since the
judge would have to solve these instances of the halting problem. The same holds
for determining the winner for submissions of the form “the running time of this
computation, if it halts, otherwise 17,” for if another player submits 18, then the
judge will have to know whether that computation halts to adjudicate the winner.

Apart from computable undecidability, however, there is the more subtle and
profound issue of logical undecidability. We might suppose that the judge is pre-
siding over the contest in the context of a fixed official background theory T , a
consistent computably axiomatizable theory that she relies upon when adjudicat-
ing the comparative sizes of the number descriptions. Perhaps this theory is very
strong—it might be ZFC plus an aspirational large cardinal hypothesis, amongst
the strongest theories thought to be consistent. The problem, of course, is that
no consistent computably axiomatizable theory will settle all the comparisons that
might be put to it; there will be concrete number descriptions for which the theory
does not provably settle their comparative size, and so the judge will not be able
to declare the winner. One player might submit, “the output of this computation”
and another “the output of that computation,” but just as the theory does not
settle the values of the universal computation, it will not be able to settle who has
won.

A determined game-player might argue that we want the judge not to use a
theory at all, but rather to use actual arithmetic truth, truth in the standard model
N. That is, we want to declare as the winner the number description that actually
gives rise to the largest number, when this description is interpreted in the standard
model N, whether or not we are able to prove this. In ZFC we can prove after all
that there is a definite truth predicate on the standard model N, which can be used
to adjudicate these comparisons.

But this proposal is much less helpful than one might expect. What good after
all is using a complete truth predicate, if we don’t know what the predicate’s truth
judgements are? Although ZFC and our other standard foundational theories prove
that there is a definite arithmetic truth predicate, these theories do not tell us fully
which arithmetic statements are true. So this proposal does not seem to enable the
judge to determine the winner. Faced with two number descriptions, even if the
judge might know that one of them describes the actually larger number, she may
have no way to find out which one.

We can summarize the basic facts in the following theorem.

Theorem 26. For any given consistent theory T , there are entries for the largest-
number contest of the form, “the first n with this concrete property ϕ(n),” for which
it is undecidable in T which player has won. Furthermore, the respective assertions
that a given player wins are statements with incomparable consistency strengths.

1Following pop-math practice, a googol is 10100; the expression x bang refers to the factorial

x!; the expression x plex means 10x; and x stack means the x-iterated exponential 1010
··
10

.
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7. Illusory linearity and the confirmation bias argument

Let me discuss a few reasons for thinking that we might simply be mistaken
about the linearity phenomenon. Perhaps it is illusory?

One observation tending to undermine the linearity evidence is simply the fact
that many common large cardinal notions were constructed specifically to strengthen
previous notions, often in well-ordered hierarchies. The progressions from inacces-
sible cardinals to hyperinaccessible and the hyperinaccessibility hierarchy and from
Mahlo through the hyper-Mahloness hierarchy and ultimately to greatly Mahlo
occurred exactly like this in the early days of set theory. Similarly with the pro-
gression from measurable cardinals to hypermeasurability and through the strong-
ness hierarchy to strong cardinals. Solovay generalized the strongly compact to
the supercompact cardinals with an embedding characterization that led naturally
to many further strengthenings, among them the almost huge, huge, and super-
huge cardinals. These conceptions altogether firmly established the paradigm of
large cardinals as critical points of embeddings j : V → M , which constitute the
large-scale bones of the large cardinal hierarchy. One naturally strengthens these
axioms simply by insisting upon progressively stronger closure properties on M .
These strengthened notions are often therefore linearly related in a way that is
completely unsurprising—they form a linear hierarchy precisely because that is
how we created them.

Mirna Džamonja describes the situation like this:

The linearity pretty obviously seems to be just a consequence of
definitions mostly being variants of each other. Increase the target,
increase the closure. . . clearly once we get to be more inventive we
shall have no linearity. [Dža21]

This linear creation process occurs even at the very bottom of the hierarchy
of consistency strength, with the tower of iterated consistency assertions, at each
transfinite stage adding the consistency statement of the theory that has come
before. Of course this creates a well-founded linear tower of consistency strength.

These observations show that huge parts of the consistency strength hierarchy
exhibit linearity only for superficial, unsurprising reasons, which therefore cannot
count as evidence of a broader or more fundamental linearity phenomenon. The
unexpected instances of linearity are simply many fewer than one might have ex-
pected. Do those instances suffice to establish linearity as a genuine phenomenon?

Meanwhile, in a number of irritating instances, we don’t yet actually know the
natural hierarchy to be linear. For example, we don’t yet know well exactly how
the strongly compact cardinals fit into the hierarchy, even though this was one of
the earliest large cardinal notions, arising from compactness properties of infinitary
logic. This case is often strangely brushed off by the defenders of linearity, but I
find it directly to undermine the claim of a sweeping linearity phenomenon for large
cardinal notions originating in diverse parts of the subject. Similarly, we don’t know
how to compare one supercompact cardinal with two strongly compact cardinals;
we don’t know the strength of an indestructible weakly compact cardinal; we don’t
know how the proper forcing axiom fits into the hierarchy; and similarly in many
other cases. As far as we know, there could be abundant nonlinearity in consistency
strengths surrounding these notions.
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One might reply to this criticism by pointing out that it is not only the large
cardinal notions themselves that are linearly ordered by consistency strength, but
all the other statements in mathematics that have been proved equiconsistent with
various large cardinal notions. Work of Solovay and Shelah shows that the impossi-
bility of removing the axiom of choice from Vitali’s construction of a nonmeasurable
set is equiconsistent with the existence of an inaccessible cardinal; dramatic work
on determinacy establishes equiconsistency connections with Woodin cardinals; and
so on in many other cases. From this point of view, it doesn’t much matter that
the large cardinal notions themselves are often linearly ordered in a trivial manner,
if all these other statements from mathematics are proved to line up with that
hierarchy—it would still establish a genuine linearity phenomenon.

But does this counterargument overplay its hand? We don’t actually have so
many instances of equiconsistency between large cardinals and mathematical prin-
ciples arising outside logic and set theory. There are some very prominent cases,
but are these truly sufficient to make the case for a genuine widespread linearity
phenomenon? I’m not sure.

Let me next explain a subtler argument suggesting that we may be mistaken
about linearity, namely, what I call the confirmation-bias argument. When en-
gaging with the independence phenomenon in set theory and establishing relative
consistency strengths, we generally begin with a model of one theory T and con-
struct from it a model of another theory S. From any model of ZF, for example,
we construct models of ZFC + CH or ZFC + ¬CH or Martin’s axiom or what have
you; from a model of ZFC with sufficient large cardinals, we construct models of
ZF + DC with various determinacy axioms. When we begin with a model of T
and construct a model of S, then we will have established S ≤ T in consistency
strength, and when there is also a converse construction, then we will also know
T ≤ S and consequently that the theories are equiconsistent, S ≡ T . When the
model of S that we construct is a set model inside the model of T , then by the
sufficiency condition I mentioned in section 1, we deduce the strict relation S < T .

In nearly all these arguments, the tools we use are forcing and transitive inner
models (including set-sized models), often in sophisticated elaborate combination.
Set theorists have become expert in using these tools to explore the vast range of
set-theoretic possibility.

The confirmation-bias observation is that with this process and these tools by
themselves, we shall never establish an instance of incomparability in consistency
strength. The reason is that both methods preserve arithmetic truth—we cannot
change the arithmetic of a model by forcing or by going to a transitive set or
transitive class inner model. But in order to establish nonlinearity in consistency
strength, it is necessary that we change the arithmetic truths of the models. To
show that theories S and T are incomparable, after all, we need to provide a model
of ZFC with Con(S) but not Con(T ) and another with Con(T ) but not Con(S),
and this will require that these models have not only different natural number
structures N, but end-extension incomparable such natural number structures—
and so they will also be interpretatively incomparable, for in any interpretation the
inconsistency of the other model would still be present and we wouldn’t achieve the
incomparability situation.
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The final conclusion of the confirmation-bias argument is that we shouldn’t be
surprised to observe only linearity, if our tools are incapable of observing nonlin-
earity. This is precisely what it means to suffer a confirmation-bias error.

8. Is self-reference disqualifying for naturality?

Many people object to the naturality of the arithmetic sentences mentioned in
section 1 on the grounds that these sentences are self-referential. Perhaps it is
thought that self-reference is a strange and unexpected feature in mathematics,
and therefore it may perhaps be disqualifying for a self-referential assertion to be
considered “natural.” I should like to push back against this view.

I find diagonalization and self-reference to be at the very core of mathematical
logic and set theory. Set theory as a subject essentially begins with Cantor’s diago-
nal argument, establishing uncountability in an instance of diagonal self-application.
Russell’s refutation of the general comprehension axiom is explicitly self-referential,
building the class of all non-self-membered sets. (And we don’t take general compre-
hension to be fine otherwise, for “natural” assertions.) These arguments are surely
amongst the founding central ideas of the subject, and the diagonalization idea is
woven deeply throughout it. Furthermore, these diagonalizations are fundamen-
tally the same as used to prove the fixed-point lemmas that lead to the Gödel and
Rosser sentences. What can be the coherent philosophy of “natural” that counts the
constructions of Cantor and Russell as natural, but not the fundamentally similar
construction of the Gödel and Rosser sentences?

To my way thinking, the large cardinal axioms themselves engage in a kind of
self-reference. To assert that there is an elementary embedding j : V → M of a
certain kind is to assert that there is transformation of objects from our current
world V to a new world M associating to every object x in our world a duplicate
j(x) in the new world, with all the same properties in that world as x had in the old
world. So the axiom at bottom posits a system of duplicates j(x), whose properties
are stated by (self-)reference back to x. In this light, nearly every large cardinal
axiom partakes of self-reference.

Or consider the proper forcing axiom PFA, a strong generalization of Martin’s
axiom MA from the case of c.c.c. forcing to proper forcing. This axiom is commonly
included amongst the “natural” set-theoretic hypotheses, with most bets placing it
as equiconsistent with (or very near to) the existence of a supercompact cardinal
in consistency strength. The axiom makes the Martin’s axiom claim about the
existence of a filter meeting any given ℵ1 many dense sets for a forcing notion P,
provided that it is proper. But to my way of thinking, the property of a forcing
notion P being proper is at least as self-referential as the Rosser sentence or the
other simple arithmetic sentences discussed earlier in this article (and an order of
magnitude more difficult). Namely, P is proper essentially when P densely often
contains conditions that are themselves generic or ensure genericity for the forcing
with the version of P itself over suitable countable elementary substructures of
sufficient fragments of the universe; put simply, P is proper when it consists of
conditions that are generic for the forcing P itself, in countable simulacra over
various countable universes. Is this any less self-referential than a sentence making
an assertion about its own Gödel code? Why should the comparatively simple
Rosser sentence be somehow beyond the pale, while properness counts as natural?
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Diagonalization and self-reference are pervasive in logic and set theory, and to
regard those features as automatically unnatural would have us declaring the entire
subject unnatural.

9. Naturality

What does it mean to have a “natural” example in mathematics? Many mathe-
maticians seem to adopt a know-it-when-you-see-it attitude to naturality, without
giving a formal account. Does it matter that what counts as natural sometimes
changes over time?

There is the connotation that natural examples are those occurring in practice—
Koellner [Koe11] refers to examples that “arise in nature” and Steel [Ste14] says
that natural set-theoretic hypotheses are those “considered by set theorists, because
they had some set-theoretic idea behind them.”

It would be the naturalist fallacy, of course, to imbue that conception of natural-
ity with all the positive connotations one usually finds for this word in mathematics.
Is mathematics rife with the naturalist fallacy? I don’t believe so, because natural-
ity as it is used in mathematics is usually not simply a reduction to actual practice.
After all, one commonly hears naturality-based objections to examples offered in
actual practice; mathematicians often criticize even a well-established argument or
example, requesting a more natural one. Consider the subject of computability
theory, for example, which has thousands of constructions using complex priority
arguments to establish certain fundamental features in the hierarchy of Turing de-
grees. These are computability-theoretic constructions, introduced by computabil-
ity theorists for computability-theoretic purposes, but the resulting degrees are
nevertheless sometimes criticized as unnatural. One hears requests for “natural”
Turing degrees with certain features—for example, is there a natural solution of
Post’s problem?

(Another instance, which I hesitate to mention: I am a set theorist who has intro-
duced the theories and axioms of this paper for a set-theoretic purpose, defending
them as natural and set-theoretic, while proving that they constitute instances of
nonlinearity and illfoundedness. But are we to take this by itself as refuting Steel’s
conjecture, mentioned on page 2? I doubt that I shall succeed so easily.)

Let us also consider that, regrettably, the actual-practice conception of naturality
can too easily be construed narrowly in a way that harms mathematical advance.
Namely, in my experience concerns about naturality are sometimes raised in effect
simply to reject unfamiliar ideas or constructions. In a few instances on MathOver-
flow, for example, a mathematician not from logic asked a mathematical question
that I was able to answer using ideas from set theory and logic; perhaps my argu-
ment used transfinite recursion or some other standard logic method, completely
natural to my way of thinking. But the solution was rejected as unnatural—the
person was just not comfortable with those methods. Apparently what would have
counted as natural in these cases was a solution using only ideas common in that
subject’s actual practice. These experiences have frankly predisposed me strongly
against the free-and-easy but ultimately empty use of “natural” in mathematics.
What a pity it would be if our conception of the natural simply leads us all into
scattered knowledge silos.

A different conception of the arising-in-practice connotation would be that nat-
ural notions are those that might easily arise in an unrelated subject or practice.
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On this view, examples in logic would count as natural if they might arise in graph
theory, algebra or topology. An actual graph-theoretic decision problem would be
seen as natural in computability theory. But this view, taken strictly, would seem
to rule out many of the large cardinal hypotheses that Steel and Koellner want to
see as natural, since other subjects generally give very little consideration to large
cardinals at all. We need a different notion of the “natural.”

There is a connotation that natural examples must be examples that have or at
least could arise independently of whatever immediate application is currently being
made of them. This would explain why many computability theoretic constructions
are often seen as unnatural. Furthermore, this property would also be true whenever
an example was not overly detailed or technical, since one can easily imagine that
simple examples could arise independently of any particular motivation. Certainly
in many instances, the natural examples seem to be those that are easily described
or presented.

For such a view, however, one might recall Shelah’s response to criticisms of his
arguments as being overly “technical”:

The term technical is a red flag for me, as it is many times used
not for the routine business of implementing ideas but for the parts,
ideas and all, which are just hard to understand and many times
contain the main novelties. [She93, Axis A]

One might respond similarly to claims of unnaturality. Would we want to hold that
all difficult examples are unnatural? Earlier I had mentioned the proper forcing
axiom PFA, which is surely difficult yet commonly seen as natural. And many
large cardinal notions, including Woodin cardinals, remarkable cardinals, and many
others, are commonly regarded as difficult.

Consider another naturality objection that one might imagine against the incom-
parability sentences of sections 2, 3, and 4. Namely, the differences between the
sentences on offer are revealed only in ω-nonstandard models, which is an unnatural
case. The differing natures of the computable function f used in theorem 8, for
example, can be exhibited only in ω-nonstandard models; in standard models, the
sentences will always agree.

The rebuttal to this objection is that consistency strength is inherently about ω-
nonstandard models. If we only ever considered ω-standard models, they would all
always agree about the consistency of any given theory whatsoever, and there would
be no hierarchy to analyze. For one theory to be weaker than another in consistency
strength, S < T , means exactly that there is a model of Con(S) + ¬Con(T ), and
this model must be ω-nonstandard if T is consistent. Therefore any substantive
treatment of the consistency strength hierarchy must ultimately be concerned with
nonstandard models.

Let me next raise the distinction between a natural kind of problem and a natural
problem instance. The polygonal tiling problem, for example, is surely a natural
kind of problem, but does this mean that every individual tiling problem is natural?
If not, this might speak against the success of my examples in corollary 14 as natural
instances of nonlinearity. Similarly, perhaps the incomparability and ill-foundedness
examples provided by theorems 8, 10, 11 and so on are merely instances of natural
kinds of problems, rather than actually natural instances themselves.

The respective undecidability of the tiling problem, the diophantine problem,
the halting problem, the Entsheidungsproblem, and many others holds profound
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philosophical significance in identifying fundamental limitations on our ability to
achieve mathematical knowledge mechanistically. The undecidability results show
that we can have no uniform computable procedure to solve instances of these
extremely natural kinds of problems. Yet, the undecidability results themselves
are all proved ultimately by means of diagonal arguments that make use in each
case of weird self-referential instances of those problems. Turing’s argument for
the undecidability of the halting problem, for example, invokes a program that
asks about its own behavior when applied to itself as input (which is something
we basically never do in practice). And this weird example is in effect copied into
all the others, when one proves undecidability through a reduction of the halting
problem.

But do we say that the halting problem is decidable for “natural” instances?
No, even though for the programs arising in practice, those written for a clear com-
putational purpose, we can indeed generally determine whether it will halt or not.
(Indeed, Miasnikov and I proved [HM06] that there is a linear-time algorithm that
correctly decides almost every instance of the halting problem, with respect to the
asymptotic density measure—as the number of states n increases, the proportion
of all n-state programs handled by our algorithm approaches 100%.) But in com-
putability theory we do not generally say that the halting problem is essentially
decidable; we do not highlight a “natural” halting-problem-decidability phenome-
non, according to which we can decide halting in the natural cases that matter.
Why do the set theorists claim that consistency strength is linear in the natural
cases that matter?

Steel [Ste13, slide 26] advances the idea that the consistency strength order of
natural theories aligns with containment of their arithmetic consequences. Specifi-
cally, the claim is that for natural theories for which S < T in consistency strength,
then any arithmetic consequence of S will also be provable in T . I pointed out in
[Ham16a], however, that Steel’s principle will require us to rule out the naturality
of many theories that we might otherwise have been inclined to accept as natural.
Specifically, if T is a natural large cardinal theory, then it seems to me that many
set theorists would readily accept Con(T ) as a natural assertion. Indeed, for many
natural theories this is an assertion that has appeared as an explicit hypothesis
in perhaps hundreds of published theorems in the set-theoretic research literature,
and in this sense fulfills the actual-practice conception of naturality.

But to regard ZFC + Con(T ) as natural would in most cases contradict Steel’s
arithmetic containment principle. To see this, assume that T proves the existence of
an inaccessible cardinal κ. It follows that T will prove all instances of the reflection
scheme asserting, “if arithmetic statement φ is provable in ZFC, then it is true.”
The reason is that T will prove that φ holds Vκ, and since φ is arithmetic, it will
be absolute to the full set-theoretic universe V . Meanwhile, the consistency-wise
stronger theory ZFC + Con(T ) cannot prove all instances of this scheme, because
this theory is consistent with the assertion ¬Con(ZFC + Con(T )), and any model
of this combined theory will think that ¬Con(T ) is provable in ZFC but not true.
Therefore, we have a natural theory T that is strictly weaker in consistency strength
than another theory ZFC + Con(T ), yet the weaker theory proves some arithmetic
statements that are not provable in the stronger theory. This would contradict the
arithmetic containment principle, unless we regard ZFC + Con(T ) as unnatural.
Therefore, if one is committed to the idea that consistency strength increases align
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with containment of arithmetic consequences for natural theories, then we cannot
allow ZFC + Con(T ) as a natural theory even when T is.

Steel will reply, of course, that indeed ZFC + Con(T ) is not a natural theory—
this theory instantiates exactly what he describes as the instrumentalist dodge in
set theory, described in [Fef+00, p. 423]. Namely, we don’t want to assume merely
that the large cardinals are consistent, but rather that they are actually true. What
I have just argued here is that the arithmetic-containment principle for consistency
strength requires this stance. In particular, according to this view the theory ZFC+
Con(ZFC + ∃ inaccessible) is not natural.

10. Analogy between set theory and computability theory

Let me draw an analogy between set theory with its study of the hierarchy of
consistency strength and computability theory with its study of the Turing degrees,
a rich hierarchy of complexity that is surely as deep and complicated as the hierarchy
of consistency strength, and also as philosophically significant—one can view the
Turing degrees as the possible countable amounts of information. Russell Miller
has described a “build it and they will come” philosophy in computability theory,
according to which if one wants to exhibit a certain feature in the hierarchy of Turing
degrees, then you simply have to get down to business and make it happen with a
particular construction built for the purpose. Computability theorists seem quite
commonly to embrace the chaotic scrappiness of the hierarchy of Turing degrees. I
wonder whether such an attitude towards the hierarchy of consistency strength in
set theory would lead us to discover fascinating new phenomenon in the degrees of
consistency strength.

Meanwhile, computability theorists point to their own natural linearity phenom-
enon, namely, the “naturally arising” Turing degrees invariably arise in a linear,
well-ordered part of the hierarchy of Turing degrees. The commonly arising defin-
able sets of natural numbers, the ones we might be independently interested in,
tend to have their Turing degrees landing precisely on one of the low-level iterated
jumps:

0 < 0′ < 0′′ < 0′′′ < · · · < 0(ω) < · · ·
In this sense the “natural” Turing degrees are well-ordered, and researchers seek a
deeper explanation. Joseph Miller points to the research efforts around the Sacks
question, asking for a degree-invariant solution of the generalized Post’s problem,
and the Martin conjecture, seeking to establish the Turing jump and its iterates
as canonical for definable degree-invariant Borel actions, as part of the program to
provide a deeper explanation of the linearity phenomenon in the Turing degrees.
Antonio Montalbán [Mon19] explains the importance of Martin’s conjecture like
this:

The [linear] hierarchy we were looking for seems to exist, but D
[the Turing degrees] seems too chaotic to help us find it. The con-
trast between the general behavior in D and the behavior of the
naturally occurring objects is so stark that there must be a deep
reason behind it. We need to dig deeper.

Those conjectures in effect seek to replace naturality talk by identifying exactly
the properties that are sought: degree-invariance and restrictions to Borel actions
in place of arbitrary actions. One needn’t refer any longer to the “natural” Turing
degrees to engage with them.
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11. A challenge for defenders of natural linearity

At the end of the day, my view is that almost all our talk of naturality in
mathematics is thoroughly unsatisfactory. We have no coherent robust concept of
what counts as natural, and empty naturality talk is too often used merely to reject
the unfamiliar. For someone to declare a construction or idea “unnatural” is often
little different from them saying, “I don’t like it” or “it uses unexpected ideas.”
To my way of thinking, we may legitimately dismiss concerns about naturality as
easily as they are raised, which is to say, effortlessly.

I should like to emphasize, however, that the rejection of examples or solutions
as “unnatural” often indicates merely that a question was not well formulated, for
the actual objections in play are ultimately something else—the solution lacked
a certain unstated but presumed feature or exhibited a certain unanticipated fea-
ture. A more informed followup formulation of the question would clarify what was
actually desired, and might lead to mathematical advance.

So let me close this article on a positive note with a challenge to the defenders
of the natural linearity phenomenon. In light of the abundant counterexamples
establishing pervasive nonlinearity and ill-foundedness in the hierarchy, I propose
that we should abandon the empty naturality talk and instead get down to the work
of identifying the attractive features we had sought in our notion of the natural. Can
we give legs to a reified naturality notion that is sufficient to establish linearity in
the consistency-strength hierarchy? For example, what is the set-theoretic analogue
of the Martin conjecture for consistency strength? Might we ultimately hope to
identify a broad class of assertions with welcome, attractive features—standing in
for the so-called “natural” assertions—which provably align into a well ordered
hierarchy of consistency strength? That would be how to do it.
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