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Introduction to games
We focus on 2-player games of perfect information: no randomness, both
players have all the information, rules are known.

A player has a winning strategy for a game if he can win, regardless of how
his opponent plays.

Fundamental Theorem of finite games (Zermelo, 1913)

In every finite two-player game of perfect information with no draws, one of
the players has a winning strategy.

Proof. Consider the game tree of a finite game.

Label the leaves as a win for one player or the other.

Back-propagation: from the bottom, label a node if a player can win from
that node.

The root node will get one label or the other, and whoever it is can
win–play to stay on your labels.

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Introduction to games
We focus on 2-player games of perfect information: no randomness, both
players have all the information, rules are known.

A player has a winning strategy for a game if he can win, regardless of how
his opponent plays.

Fundamental Theorem of finite games (Zermelo, 1913)

In every finite two-player game of perfect information with no draws, one of
the players has a winning strategy.

Proof. Consider the game tree of a finite game.

Label the leaves as a win for one player or the other.

Back-propagation: from the bottom, label a node if a player can win from
that node.

The root node will get one label or the other, and whoever it is can
win–play to stay on your labels.

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Introduction to games
We focus on 2-player games of perfect information: no randomness, both
players have all the information, rules are known.

A player has a winning strategy for a game if he can win, regardless of how
his opponent plays.

Fundamental Theorem of finite games (Zermelo, 1913)

In every finite two-player game of perfect information with no draws, one of
the players has a winning strategy.

Proof. Consider the game tree of a finite game.

Label the leaves as a win for one player or the other.

Back-propagation: from the bottom, label a node if a player can win from
that node.

The root node will get one label or the other, and whoever it is can
win–play to stay on your labels.

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Introduction to games
We focus on 2-player games of perfect information: no randomness, both
players have all the information, rules are known.

A player has a winning strategy for a game if he can win, regardless of how
his opponent plays.

Fundamental Theorem of finite games (Zermelo, 1913)

In every finite two-player game of perfect information with no draws, one of
the players has a winning strategy.

Proof. Consider the game tree of a finite game.

Label the leaves as a win for one player or the other.

Back-propagation: from the bottom, label a node if a player can win from
that node.

The root node will get one label or the other, and whoever it is can
win–play to stay on your labels.

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Introduction to games
We focus on 2-player games of perfect information: no randomness, both
players have all the information, rules are known.

A player has a winning strategy for a game if he can win, regardless of how
his opponent plays.

Fundamental Theorem of finite games (Zermelo, 1913)

In every finite two-player game of perfect information with no draws, one of
the players has a winning strategy.

Proof. Consider the game tree of a finite game.

Label the leaves as a win for one player or the other.

Back-propagation: from the bottom, label a node if a player can win from
that node.

The root node will get one label or the other, and whoever it is can
win–play to stay on your labels.

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Theorem

Chess is determined, i.e. exactly one of the following is true:

i White has a winning strategy,

ii Black has a winning strategy,

iii Both White and Black have a strategy to force a draw.

Proof.

From Maschler, Solan, Zamir, Game Theory (2013)
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The Fundamental Theorem of infinite games

A game is infinite if its game tree is infinite—in particular, if it is possible
for players to choose among infinitely many moves in a turn.

A game is open for some player, if that player can only win in finitely many
moves. In other words, if that player’s set of winning plays is open in the
game tree with the product topology.

Theorem (Open determinacy, Gale & Stewart 1953)

In every infinite two-player open game of perfect information, one of the
players has a winning strategy. (or both have drawing strategies, if draws
are allowed)

In open games, game values generalise the chess idea of mate-in-2 or
mate-in-3. The game value of a position is an ordinal that measures the
number of moves required for the open player to achieve a win.
We begin with some examples.
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Finite and infinite draughts
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Rules of infinite draughts

Forced jump.

Forced iterated jump.

The first player who
has no legal move available loses.

We consider only open games:
plays that last infinitely many moves are draws.
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The infinite jump rule

The black piece that makes an infinite iterated jump disappears from the
board.
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Finite game values: Red to move

Game value 2

Game value 3
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Finite game values: Red to move

Game value 2 Game value 3
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Game value ω

Black to move, with obligation to
jump—Black cannot make an infinite
jump, which would lead to loss.

Black has to rest on some square n,
reaching a position with game value
n for Red: Black loses after n moves.

Playing this is alike to counting down
from ω.

Red can definitely win, in finitely many
moves, but Black can choose how
long it takes, by choosing a large n.
Black makes such choice on the first
move only.
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Definition
In an game open for players Red and Black, the ordinal game value of a position
for Red is defined by transfinite recursion:

1 If the game is already won by Red, then the value of the position is 0.

2 If the game is not yet won and Red can move to a position with value α, then
for the smallest such ordinal α, the value of the position is α+ 1.

3 If it is Black’s turn, then the value of the position is the supremum of the
values of the positions to which a legal move can be made, if all such
positions have a value, otherwise the value is not yet defined.

If a position has value α+ 1 for Red, then Red can make a move and reach a
position with value α, while Black cannot play to reach a position with higher or
no value.

If a position has value a limit ordinal γ for Red, then Black can only play to reach
a position with value β < γ.

If a position has no value for Red, then Red cannot reach a position with value,
and Black can play so to reach another position without value.
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Hence, starting from a position with some value for Red, Red can follow the
value-decreasing strategy and win in finitely many moves.

Otherwise, from a position with no value for Red, Black can follow the
value-avoiding strategy and prevent a Red win.

Notice that in any open game, the initial position either has a game value
for one player, the other player, or neither. Thus, either one player has a
winning strategy, or they can both force a draw.

This is a proof of the Fundamental Theorem of infinite games:

Theorem (Open determinacy, Gale & Stewart 1953)

In every infinite two-player open game of perfect information, one of the
players has a winning strategy. (or both have drawing strategies, if draws
are allowed)
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Theorem (Hamkins & L. 2022)

Every countable ordinal arises as the game value of a position in infinite
draughts.

Proof idea, as in Evans & Hamkins 2014.
Embed well-founded trees, which do not have
infinite branches, into positions of infinite
draughts.

The draughts play will proceed as though
Black is climbing the tree, so that Black loses
when reaching a leaf.

The game value will thus track the ordinal
rank of the well-founded tree itself.

Lemma.

The full binary tree can be embedded in the infinite draughtboard.
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Theorem (Hamkins & L. 2022)

Every countable ordinal arises as the game value of a position in infinite
draughts with the forced jump rule, but without the forced iterated jump
rule.

Proof. Induction on the game
value.

Suppose that the game values
α1 ≤ α2 ≤ α3 ≤ . . . have all been
realised as well-founded trees
embedded in the board.

Construct this position, in which
Black can access branch nodes
with value αn and rest on
numbered squares.

This position realises the game
value supn(αn + 1).
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Construction without forced iterated jump and forced jump

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Construction with forced iterated jump and forced jump

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

The omega one of a game is the supremum of the values realisable in it.

Corollary (Hamkins & L. 2022)

The omega one of infinite draughts is at least true ω1.

ωdraughts
1 ≥ ω1.

Remark. (McCallum) There are positions in
infinite draughts in which a player can choose
among uncountably many moves.

A black king at the root of a full binary tree can
choose among uncountably many infinitely
iterated jumps, one for each branch of the tree.

Is there a position of infinite draughts with
uncountable game value? We don’t know.
In that case, we could have ωdraughts

1 > ω1.
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All defensive strategies can be implemented

Distinct trees can have the same rank. Each tree can be implemented as a
draughts position uniquely, giving rise to a position with the corresponding
game value.
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Computable play

Theorem (Hamkins & L. 2022)

There is a computable position in infinite draughts, such that Red has a
computable strategy that wins against any computable Black strategy, and forces a
draw or better against any Black strategy.
Meanwhile, Black has a (noncomputable) drawing strategy.

Proof, as in Evans & Hamkins 2014. There is an infinite computable binary
branching tree T with no computable infinite branch.

We can construct a position so that play unfolds as though Black is climbing
through T . Since T has an infinite branch, there will be a strategy for Black to
climb the tree without getting stuck in a terminal node, and this will be a draw by
infinite play—such strategy must be not computable.

But if Black plays according to a computable strategy, then he will find himself
stuck at a terminal node, where he will lose.

The strategy for Red in either case is to play so to force Black to keep climbing the
tree, as seen before.
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But if Black plays according to a computable strategy, then he will find himself
stuck at a terminal node, where he will lose.

The strategy for Red in either case is to play so to force Black to keep climbing the
tree, as seen before.
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Computable play

Theorem (Hamkins & L. 2022)

There is a computable position in infinite draughts, such that Red has a
computable strategy that wins against any computable Black strategy, and forces a
draw or better against any Black strategy.
Meanwhile, Black has a (noncomputable) drawing strategy.

Proof, as in Evans & Hamkins 2014. There is an infinite computable binary
branching tree T with no computable infinite branch.

We can construct a position so that play unfolds as though Black is climbing
through T . Since T has an infinite branch, there will be a strategy for Black to
climb the tree without getting stuck in a terminal node, and this will be a draw by
infinite play—such strategy must be not computable.

But if Black plays according to a computable strategy, then he will find himself
stuck at a terminal node, where he will lose.

The strategy for Red in either case is to play so to force Black to keep climbing the
tree, as seen before.

Infinite draughts Infinite-Games Workshop



Games Draughts Game values Strategies

Thank you!

Davide Leonessi
Program in Mathematics
Graduate Center, City University of New York
http://leonessi.org
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