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Skolem paradox
Skolem observed that if there is a model of ZFC set theory,
then there is a countable model M |= ZFC.

Downward Löwenheim-Skolem theorem

Every model (in a countable language) admits a countable
elementary substructure.

The paradoxical part is that ZFC proves the existence of
uncountable sets, such as R.

So the submodel has objects it thinks are uncountable, and yet
it has only countably many objects altogether.

Thus our notions of countability and uncountability are not
absolute.
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Transitive models of set theory

In set theory it is natural to seek standard models ⟨U,∈⟩,
models that use the actual ∈ relation.

Also natural to focus on transitive models ⟨W ,∈⟩, those for
which all the actual elements of any set a ∈ W are also in W .

Transitive models know fully about their sets.
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Löwenheim-Skolem with transitive models

By the Löwenheim-Skolem theorem, every model W |= ZFC
admits a countable elementary submodel U ≺ W .

If W uses standard ∈ relation, then so also does U.

So ⟨U,∈⟩ is a countable standard model making all the same
truth assertions about its elements as W .

Note that the submodel ⟨U,∈⟩ may not be transitive.

In the nontransitive case, elements of U can be uncountable,
even though U is countable.
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A better paradox via Mostowski
Given any transitive model ⟨W ,∈⟩ |= ZFC, apply LS to find
countable elementary submodel U ≺ W .

This submodel U is well founded and U |= extensionality.

Mostowski collapse

Every well-founded extensional structure ⟨U,E⟩ is isomorphic
to a transitive set via the Mostowski collapse

π(y) = {π(x) | x E y }.

The range M = {π(y) | y ∈ U } is transitive, and

x E y ⇐⇒ π(x) ∈ π(y).

So π : ⟨U,E⟩ ∼= ⟨M,∈⟩.
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Countable transitive models
Putting it together:

W

π
X

M

Given transitive W |= ZFC,

find a countable X ≺ W by
Löwenheim-Skolem, and then apply Mostowski to get
countable transitive model M.

Conclusion

If there is a transitive model of ZFC, then there is a countable
transitive model of ZFC.
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Stronger forms in the philosophical literature

The Submodel Theorem (SMT), Benacerraf [BW85]

Any transitive model for ZF has a transitive countable
submodel.

A “transitive submodel version” of Löwenheim-Skolem theorem.

Key aspect: submodel. A countable transitive submodel.

Unfortunately, the meaning of “submodel” is not specified

Given Löwenheim-Skolem context, natural to take him as
intending elementary submodel. Or just same theory?

From the Skolem paradox context, it is clear that he wants at
least submodel |= ZF.
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Key aspect: submodel. A countable transitive submodel.

Unfortunately, the meaning of “submodel” is not specified
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Stronger form in SEP

SEP entry on Skolem’s paradox, Bays 2014

The Downward Löwenheim-Skolem Theorem says that if N is a
model of (infinite) cardinality κ and if λ is an infinite cardinal
smaller than κ, then N has a submodel of cardinality λ which
satisfies exactly the same sentences as N itself does.

Finally, the Transitive Submodel Theorem strengthens the
downward Löwenheim-Skolem theorem by saying that if our
initial N happens to be a so-called transitive model for the
language of set theory, then the submodel generated by the
downward theorem can also be chosen to be transitive.

Seems to assert only the same theory for the submodel, rather
than being an elementary submodel.
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The intended proof

Given transitive W |= ZFC, get countable X ≺ W by
Löwenheim-Skolem, and then apply the Mostowski collapse:

W W

π
X

M

The intended result is a countable transitive M ⊆ W with the
same theory.

Indeed, we would expect an elementary embedding j : M → W ,
since j = π−1 : M ∼= X ≺ W .
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A wrench in the works
The intended proof, however, doesn’t quite work.

The problem is that the Mostowski collapse might leak outside
the model.

W

X

M

W

Why should it stay as a submodel of W? I couldn’t see why.

It was called the Transitive Submodel Theorem, but is it actually
a theorem? We don’t seem to have much reason to expect a
transitive submodel M ⊆ W with the same theory.
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A spectrum of Skolem reflection principles
Ultimately we have a spectrum of theorems and principles.

Löwenheim-Skolem

Every model W |= ZFC has a countable elementary submodel
U ≺ W .

Löwenheim-Skolem + Mostowski

For every transitive W |= ZFC, there is a countable transitive
model M and elementary embedding j : M → W .

Transitive submodel of ZFC (weak reading of Benacerraf)

Every transitive model of set theory W |= ZFC has a countable
transitive submodel M ⊆ W with M |= ZFC.
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Spectrum of Skolem reflection principles

Transitive submodel theorem (SEP)

For every transitive model W |= ZFC there is a countable
transitive submodel M ⊆ W with the same theory as W .

Transitive submodel theorem (embedding form)

For every transitive model W |= ZFC, there is a countable
transitive submodel M ⊆ W and elementary embedding
j : M → W .

Transitive elementary submodel theorem (strong Benacerraf)

For every transitive model W |= ZFC there is a countable
transitive elementary submodel M ≺ W .

On Skolem’s paradox and the transitive submodel theorem Joel David Hamkins



Skolem paradox Provable instances Main counterexample Iterated Skolem paradox

Spectrum of Skolem reflection principles

Transitive submodel theorem (SEP)

For every transitive model W |= ZFC there is a countable
transitive submodel M ⊆ W with the same theory as W .

Transitive submodel theorem (embedding form)

For every transitive model W |= ZFC, there is a countable
transitive submodel M ⊆ W and elementary embedding
j : M → W .

Transitive elementary submodel theorem (strong Benacerraf)

For every transitive model W |= ZFC there is a countable
transitive elementary submodel M ≺ W .

On Skolem’s paradox and the transitive submodel theorem Joel David Hamkins



Skolem paradox Provable instances Main counterexample Iterated Skolem paradox

Spectrum of Skolem reflection principles

Transitive submodel theorem (SEP)

For every transitive model W |= ZFC there is a countable
transitive submodel M ⊆ W with the same theory as W .

Transitive submodel theorem (embedding form)

For every transitive model W |= ZFC, there is a countable
transitive submodel M ⊆ W and elementary embedding
j : M → W .

Transitive elementary submodel theorem (strong Benacerraf)

For every transitive model W |= ZFC there is a countable
transitive elementary submodel M ≺ W .

On Skolem’s paradox and the transitive submodel theorem Joel David Hamkins



Skolem paradox Provable instances Main counterexample Iterated Skolem paradox

Sorting it out

I should like to sort out the various principles, identify which are
theorems, which are not, which are independent of ZFC, and
investigate the consistency strengths of the principles and their
negations.
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Provable instances

All the various strong assertions of Skolem reflection are
provable in certain special cases.

For models W |= ZFC + V = L

For models W |= ZFC with height having uncountable
cofinality
In particular, for models W of height ω1

For models W |= ZFC for which Th(W ) ∈ W .
Let me go through some of these arguments now.
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For models W |= ZFC for which Th(W ) ∈ W .
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Models of V = L

Theorem

Every uncountable transitive W |= ZFC + V = L has a
countable transitive M ⊆ W with same theory. Indeed, we can
have M ∈ W and elementary j : M → W.

Proof.

W = Lθ some ordinal θ ≥ ω1.

By downward Löwenheim-Skolem, there is countable X ≺ Lθ.

By Mostowski collapse, ∃π : X ∼= M for CTM M.

By Gödel condensation, M = Lα some α. So M ∈ W .

j = π−1 : M → W is elementary.
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Getting countable transitive submodels of ZFC

Corollary

Every transitive model W |= ZF has a countable transitive
submodel M ⊆ W with M |= ZFC.

This proves the weak reading of Benacerraf as a theorem.

Given W , we go to LW and apply the previous theorem to get
countable transitive M ⊆ LM with the same theory as LM .

This argument essentially proves the existence of the
Shepherdson-Cohen model, the least Lα |= ZFC. This model is
a submodel of all transitive models of ZF.
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Models of uncountable cofinality
Theorem

If W |= ZFC is transitive and the height of W is an ordinal with
uncountable cofinality, then there is transitive M ⊆ W with same
theory and indeed M ∈ W with elementary j : M → W.

Proof.

Assume transitive W |= ZFC with uncountable cofinality.

Let κn = first Σn-correct cardinal, meaning Wκn ≺Σn W .

Let κ = supn κn. Union of progressively elementary chain.

Wκ0 ≺Σ0 Wκ1 ≺Σ1 Wκ2 ≺Σ2 Wκ3 ≺Σ3 · · · W

Hence, Wκ ≺ W fully elementary.

Inside W , find M via LS+Mostowski, so ∃j : M → Wκ ≺ W .
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Subtle issues about definability

Each κn = least Σn-correct cardinal is definable, individually.

But these are not definable uniformly in n. Can’t define the
sequence.

So the definition κ = supn κn is meta-theoretic, made outside
the model.

Indeed, since Wκ ≺ W , all definable elements are below κ.

In general, in ZFC we cannot say, “let κ be the supremum of the
first Σn-correct cardinal for n < ω.”
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The definable cut

The definable cut of any model W |= ZFC consists of the sets
arising below any definable ordinal.

The definable cut U is always an elementary substructure
U ≺ W .

In the transitive case, U = Wκ, where κ is the supremum of the
definable ordinals, same as κ = supn κn.

Definable cuts work in models of PA also.
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Models arising from large cardinals

Corollary

If κ is an inaccessible cardinal, then Vκ has a countable
transitive submodel M ⊆ Vκ with the same theory, and indeed,
there is such an M with an elementary embedding j : M → Vκ

with both M, j ∈ Vκ.

Proof.

If κ is inaccessible, hence uncountable cofinality.

Does not (yet) cover worldly cardinals, Vκ |= ZFC, since these
can be singular.
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Models containing their own theory as an element

Theorem

Suppose W |= ZFC is transitive and contains its own theory as
an element Th(W ) ∈ W. Then there is a countable transitive
submodel M ⊆ W with the same theory. For uncountable W,
can find M ∈ W.

Proof.

Assume W |= ZFC, uncountable transitive. Let T = Th(W ).

The assertion that T has a transitive model has complexity Σ1
2.

Hence true in Lω1 [T ] by Shoenfield absoluteness theorem.

But Lω1 [T ] ⊆ W , hence true in W .
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Countable transitive submodel theorem under V = L

Corollary

If V = L, then the transitive submodel theorem is true—every
transitive W |= ZFC has countable transitive submodel M ⊆ W
with same theory.

Note difference. Earlier, we have models W |= V = L. Now, we
are assuming V = L in the metatheory of all W .

Proof.

Only need that R ⊆ L. Then every real is in Lω1 .

Hence, Th(W ) ∈ Lω1 , and so Th(W ) ∈ W if W is uncountable.

So there is countable transitive M ⊆ W with same theory.
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Strong Benacerraf principle
Theorem

If all transitive models of ZFC have height at most ω1, then the
strong Benacerraf principle holds. Every transitive model
W |= ZFC admits a countable transitive elementary submodel
M ≺ W.

This hypothesis is an anti-large cardinal assumption.

But also, to have a model W |= ZFC of height ω1 requires that
ω1 is inaccessible in L. Think of LωV

1
.

Proof.

If W |= ZFC is uncountable transitive height ω1, then all initial
segments of W are countable.

Can find a club of elementary substructures (Vκ)
W ≺ W , which

each serve as an M.
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But also, to have a model W |= ZFC of height ω1 requires that
ω1 is inaccessible in L. Think of LωV

1
.

Proof.

If W |= ZFC is uncountable transitive height ω1, then all initial
segments of W are countable.

Can find a club of elementary substructures (Vκ)
W ≺ W , which

each serve as an M.
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Countable transitive submodel theorem not a theorem

The countable transitive submodel theorem asserted that every
transitive model W |= ZFC admits a countable transitive
submodel M ⊆ W with the same theory.

Recall that the intended proof was flawed.

And yet the conclusion was true in many cases.

It was troubling to determine whether it was indeed a theorem
or not.

Ultimately, however, it turns out the principle is overstated—it is
not a theorem of ZFC.

Let me present a counterexample.
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Main counterexample

Counterexample theorem

Under suitable assumptions, there is a transitive model of ZFC
having no countable transitive submodel with the same theory.

Assumptions
There is a nonconstructible real number, and
There is a transitive W |= ZFC with height > ω1.

Both assumptions are necessary.
If every real is constructible, the transitive submodel
theorem holds.
If transitive models have height at most ω1, then strong
Benacerraf holds.
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Main Lemma

If Lθ[x ] is an uncountable transitive model of ZFC, containing x as an
element, then the following are equivalent.

1 There is a countable transitive submodel M ⊆ Lθ[x ] with the
same theory as Lθ[x ].

2 There is a countable transitive model M ∈ Lθ[x ] with the same
theory as Lθ[x ].

3 The theory of Lθ[x ] is an element of Lθ[x ].

Proof.

Key step, for (1 → 2), if M ⊆ Lθ[x ] has same theory, then M = Lα[x̄ ]
for some x̄ ∈ M ⊆ W and countable α, so M ∈ Lθ[x ].

So containing own theory is necessary and sufficient for the transitive
submodel theorem for models of form L[x ].
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Counterexample proof sketch
We produce Lθ[x ] |= ZFC, which does not contain its own
theory.

Fix a nonconstructible z ⊆ ω.

Pick Lθ |= ZFC of minimal height ω1 < θ.

We prove every element of Lθ is definable from parameters
α ≤ ω1.

Take any regular cardinal λ > ω1 in Lθ.

Let λn = supΣn-definable ordinals below λ, allowing
parameters α ≤ ω1.

Follows that λ = supn λn. Singular in V , regular in Lθ.
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Counterexample proof outline, continued

Similar analysis shows that for any ≤ ω1-distributive forcing
notion P ∈ Lθ, we can construct in V an Lθ-generic G ⊆ P.

We form Lθ[G], adding a Cohen subset to λ, and then coding it
into the GCH pattern above.

But we do it with a wrinkle, where we make sure during the
construction that the bit at λn codes nth bit of z.

So W = Lθ[G] has the bits of z coded into its theory.

So Th(W ) /∈ W .

Since W has form Lθ[x ], this is a counterexample to the
countable transitive submodel theorem. □
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Necessary and sufficient characterization

Since the hypotheses were necessary, we may deduce:

Corollary

The transitive submodel principle holds if and only if every real
is constructible or all transitive models of ZFC have height at
most ω1.
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Large cardinals refute the principle

All the usual large cardinals imply that there are transitive
models of ZFC taller than ω1.

And all moderately large large cardinals imply that there are
nonconstructible reals, such as 0♯.

So all such large cardinals directly refute the countable
transitive submodel principle.

Thus, the countable transitive submodel principle can be seen
as an anti-large-cardinal principle
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Consistency strength

It follows that the transitive submodel proposition is
equiconsistent with ZFC.

The reason is simply that the transitive submodel proposition is
vacuously true if there are no transitive models of ZFC, or
indeed if merely there are no uncountable transitive models.

Alternative proof: the transitive submodel principle follows from
V = L, which is equiconsistent with ZFC.
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Strength of negated principle
Since the transitive submodel principle is an anti-large cardinal
principle, it is the negation that has interesting consistency
strength.

The failure of the transitive submodel principle is equiconsistent
over ZFC with the existence of an uncountable transitive model
of ZFC.

The failure directly implies the existence of an uncountable
transitive model of ZFC.

Conversely, if W is an uncountable transitive model, then if
height of W is > ω1, we get the counterexample in a Cohen
extension.

And if height of W is exactly ω1, then ω1 is inaccessible in L,
and so there are counterexamples in L.
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Submodels versus elements

A further subtle matter.

In most of the instances with uncountable transitive W |= ZFC
where we found countable transitive M ⊆ W with same theory,
we actually had M ∈ W .

Is this necessary?
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Submodel but no element

The answer is no.

Theorem

If there is a nonconstructible real number and there is a
transitive model of ZFC with height exceeding ω1, then there is
an uncountable transitive model W of ZFC that admits a
countable transitive submodel M ⊆ W with the same theory, but
admits no such model M as an element M ∈ W.

The proof is a class-forcing version of the main counterexample
argument. We arrange a submodel M ⊆ W , but Th(W ) /∈ W .
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Submodel versus embedding

There are many similar questions regarding the distinction
between having M ⊆ W with same theory and having M ⊆ W
with j : M → W .

This is part of ongoing work.
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Addendum on the iterated Skolem paradox
Skolem observed that a model of set theory M can be wrong in
its judgment that a set is uncountable.

M
RM

Uncountable
inside M

But outside M
RM is countable

If M is any countable model of ZFC, then the set of real
numbers RM is uncountable from M ’s perspective, but
countable outside M.

Judgments that a set is countable or uncountable can thus
depend on the set-theoretic background in which they are
made.
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Reverse Skolem paradox

We can also arrange the reverse situation, where a set is
countable inside a model W , but uncountable outside.

W
NW

Countable
inside W

But outside W
NW is uncountable

For example, take the theory ZFC with uncountably many
constants nα, asserting they are pairwise distinct natural
numbers. By compactness, there is a model.
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Extreme reverse Skolem paradox

By pushing this harder, we can have all nα < x for some natural
number x in W .

W
x

Finite
inside W

But outside W
x is uncountably

infinite
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Iterated nonabsoluteness

There are models M0 ⊆ M1 ⊆ M2 of ZFC viewing a set x as
finite, then uncountable, and finally countably infinite:

M2M1M0

x
x is finite

x is
uncountable

x is
countably

infinite
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Indefinitely iterated indefiniteness

Indeed, we can extend the pattern of indefiniteness indefinitely.

M5M4M3M2M1M0
x

x is finite
x is

uncountable
x is

countable
x is

uncountable
x is

countable
x is

uncountable
· · ·

Finiteness is downwards absolute from any metatheoretic
context to the models available there.
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Thank you.
Slides and articles available on http://jdh.hamkins.org.
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