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The universal algorithm

Theorem

There is a Turing machine program e with an amazing universal
extension property:

1 It enumerates a finite sequence, and PA proves this.
2 In any model M |= PA, if the sequence is s, then for any

desired t, there is an end-extension in which e computes t.

N

M

s
t

It’s the empty sequence in the standard model.

History: Woodin [Woo11], Blanck and Enayat [BE17;
Bla17], simplified proof in [Ham18; Ham17].

Proof proceeds by a highly self-referential algorithm,
“the petulant child.”
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Warm up
Let’s warm up with the baby version.

Consider the program e that searches for a proof in PA that
program e does not produce a certain explicit finite output.

When found, give exactly that output.

“The petulant child”

Observe: If PA is consistent, you cannot prove that e does not
have any particular output, since then it would have such an
output for the least instance.

Conclusion: it is consistent with PA that this program has
whatever output you want.

(The extenson property of the universal algorithm is more.)
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Proof of the universal algorithm theorem

Now the full version, with my proof.

Let’s define the universal algorithm e.

Suffices to have just the adding-one extension property.

Proceed in stages, releasing numbers in batches.

Stage n succeeds, if there is a proof from fragment PAkn ,
with kn smaller than all earlier ki , of a statement of the form

“it is not the case that e has exactly n stages and re-
leases s at stage n,”

where s is a finite list of explicit numerical terms.

In this case, release s at stage n. Proceed to next stage.
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Proof of universal algorithm

Succinctly:

The program e enumerates s at stage n, if it finds proof, in a
strictly smaller fragment of PA each time, that it does not do so
as its last stage.

Thus, program e is a petulant child

Upon finding a rule forbidding certain behavior, it immediately
exhibits that behavior.

Note

Use Kleene recursion theorem to find e, solving the circular
definition.

GCT 2024 Joel David Hamkins
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Finiteness

Observation

The universal sequence is finite.

Proof.

The fragments PAkn must descend, and so there can be at most
finitely many successful stages.

Thus, the sequence enumerated by e will be finite.

And PA can undertake this argument.
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Empty in the standard model

Claim

If stage n is successful, then kn is nonstandard.

Proof.

Consider last successful stage n. The assertion
“e enumerates s with exactly n successful stages”

has complexity Σ0
2. For standard k , the Mostowski reflection

theorem shows PA ⊢ Con(Trk ).

So M cannot have proof from PAk of something contrary to
actual behavior. So kn must be nonstandard.

In particular, e enumerates empty sequence in N.
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Proving the extension property of e

Assume e enumerates s in M and s ⊆ t .

Let n = first unsuccessful stage. Pick k < ki nonstandard.

Key Observation

Since stage n was not successful, M must think that
PAk + “e has exactly n stages and enumerates t”

is consistent.

So M can build a Henkin model of this theory, N.

So N end-extends M and thinks e enumerates t . And N |= PA
since k is nonstandard. This proves the theorem. 2
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Classical consequences

Several classical results in the model theory of arithmetic can
be seen as immediate consequences of the universal algorithm.

Let us explore a few examples.
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Maximal Σ1 diagrams

Corollary

No model of PA has a maximal Σ1 diagram.

Proof.

If M |= PA, then there is an unsuccessful stage n, which
becomes successful in an end-extension N.

So the assertion “stage n is successful” is a new Σ1 statement
about n true in N, false in M.

For example, there is a diophantine equation, with coefficients
in M, having no solution in M, but it has a solution in N.
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Independent Π0
1 sentences

Corollary (Kripke, Mostowski)

There are infinitely many independent Π0
1 sentences

η0, η1, η2, . . .

Any desired true/false pattern is consistent with PA.

Proof.

Let ηk = “k does not appear on the universal sequence.”
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Independent buttons

Corollary “independent buttons”

There are Σ0
1 sentences

ρ0, ρ1, ρ2, . . .

all false in N and for any M |= PA, any pattern I coded in M,
there is end-extension N with

1 Every ρk becomes true in N for k ∈ I.
2 Truth of ρk is not changed for k /∈ I.

Proof.

Let ρk = “k appears on the universal sequence.”
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Independent Orey sentences
Corollary “Independent switches”

There is an infinite list of independent Orey sentences

σ0, σ1, σ2, . . .

For any M |= PA any pattern I coded in M, there is
end-extension N with

1 σk is true in N for k ∈ I.
2 σk is false in N for k /∈ I.

Proof.

Let σk = “k is amongst the numbers added at the last
stage.”
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Flexible formulas

Corollary (Kripke)

For n ≥ 2, there is a Σ0
n formula φ(x) that can be made so as to

agree with any desired Σ0
n formula ψ(x ,a) in an end-extension.

That is, for any M |= PA and any such ϕ and a ∈ M, there is an
end-extension N satisfying

∀x φ(x) ↔ ψ(x ,a).

Proof.

Let φ(x) = Φ(k , x ,a) where ⟨k ,a⟩ is last on the universal
sequence and Φ is a universal Σ0

n formula.
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Arithmetic potentialism

Consider the models of PA under end-extension M ⊆e N.

This is a potentialist system, providing natural interpretation of
modal operators.

M |= φ if there is M ⊆ N |= φ.
M |= φ if all M ⊆ N have N |= φ.

Theorem (Hamkins [Ham18])

The valid principles of arithmetic end-extensional potentialism
is exactly S4.

The proof uses the universal algorithm to code arbitrary finite
pretrees. At bottom, possibility branches like these trees.
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Generalization to Σm-elementary extensions

The universal algorithm generalizes to Σm+1-definable finite
sequence, with the universal extension property with respect to
Σm-elementary end-extensions M ≺Σm N.

N

M

s

t

Again every model M |= PA can realize any
desired extension t in an end-extension N.

But the difference now is that Σm truth is
preserved between M and N.
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Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.

Proof.

Build a tower of progressively elementary extensions

...
M3

M2

M1

M0

M0 ⊆ M1 ≺Σ1 M2 ≺Σ2 M3 ≺Σ3 · · ·

Put a0 last on the Σ1-definable sequence.

Then a1 last on Σ2-sequence, and so on.

Limit model N is a model of PA.

Can arrange that every element becomes
definable. So N is pointwise definable.
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Leibnizian analogue
A model is Leibnizian if distinct individuals are discernible.

In countable language, size at most continuum.

Theorem (Hamkins, Gitman)

Every model of PA of size at most the continuum admits a
Leibnizian extension. Indeed, for any particular natural number
m, the model admits a Σm-elementary Leibnizian extension.

Proof strategy. Given M0 |= PA of size at most continuum, construct a
progressively elementary tower

M0 ≺ M1 ≺Σm M2 ≺ M3 ≺Σm+1 M4 ≺ M5 ≺Σm+2 · · ·

Even stages, fully elementary. Create a countable set of points
from which previous elements are discernible.

Odd stages, progressively elementary. Make those points
definable.
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Ordinal Turing machines

Let’s discuss infinitary analogues of the universal algorithm.

Consider infinite-time computation.
Infinite time Turing machines (ITTM [HL00]) have tape
length ω, but run into transfinite time.
Ordinal Turing machines (OTM [Koe05]) have tape length
Ord, run into transfinite time.

Programs are finite instruction sets. Tape cells have 0 and 1. At
limits, update head position and state with lim inf.
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Universal algorithm with ordinal Turing machines
I should like to describe the infinitary computable analogue of
the universal algorithm.

Theorem

There is OTM universal algorithm.
1 Enumerates a finite sequence of ordinals, provably in ZF.
2 In any countable M |= ZF, if sequence is s, then for any

s ⊆ t in M there is end-extension M ⊆ N in which the
computed sequence is t .

The program runs longer in the extension model and places the
desired additional ordinals onto the sequence.

Let’s get into it.
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Universal definition in set theory
Woodin and I had proved the first set-theoretic analogue of the
universal algorithm [HW17].

There is a Σ2 definable finite sequence

a0, a1, . . . , an

with the universal extension property for top-extensions.

N

M

s
t

If sequence is s in countable M |= ZFC, then
for any desired t , there is a top-extension
N |= ZFC in which the sequence is t .

The definition (complex, sophisticated) essentially
looks for stages Vα that have no end-extension
adding a next point a, even in any forcing extension,
and when found, adds a anyway. “petulant child”
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Σ1-definable universal sequence

Kameryn Williams and I proved [HW21] the Σ1-analogue.

There is a Σ1 definable sequence

a0, a1, . . . , an

with the universal extension property for end-extensions.

N

M

s
t

If sequence is s in countable M |= ZFC,
then for any desired t , there is an
end-extension N |= ZFC in which the
sequence is t .

In fact, can get N |= ZFC for any theory
true in some inner model W of M.
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History
The universal finite sequence theorem continues a progression:

The universal algorithm, for end-extensions of models of
PA. (Woodin [Woo11]), [BE17; Bla17; Ham18]
The Σ2-definable universal finite set, for top-extensions of
models of ZFC. (Hamkins/Woodin [HW17])
The Σ1-definable universal finite sequence, for
end-extensions of models of ZFC. (Hamkins/Williams
[HW21])
The Σ1-definable version leads immediately to the OTM
universal algorithm.
I subsequently proved the Σn versions for every n.

In each case, a certain highly self-referential definable
sequence has a universal extension property for extensions of
the given type.
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Proof of the universal finite sequence theorem

Let’s give the Σ1-definable universal finite sequence and prove
that it has the universal extension property.

We describe two highly self-referential set-theoretic processes,
A and B, intended for the ω-nonstandard models and
ω-standard models, respectively.

Ultimately, we merge the two processes into a single definition
with the desired properties.
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Process A
Intended for ω-nonstandard models.

Proceeds in a sequence of stages, each adding one entry to the sequence.

Stage n succeeds and an defined, if there is transitive mn, countable in L,
containing all earlier mi , and natural number kn, smaller than all earlier ki ,
such that an ∈ mn and ⟨mn,∈⟩ has no covering end-extension to a model
⟨N,∈N⟩ |= ZFkn , making every set in mn countable, and placing this very an

onto its own A-sequence at stage n as the last element.

Slogan: place an object onto the sequence, if we find a countable transitive
set having no covering end-extension in which we would have done so as the
next and last element.

Always use the L-least witnesses. The map n 7→ (mn, kn, an) is Σ1.

Use Gödel-Carnap fixed-point lemma to resolve the circularity.

Since kn descend, there will be only finitely many successful stages. So
sequence is finite.
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Use Gödel-Carnap fixed-point lemma to resolve the circularity.

Since kn descend, there will be only finitely many successful stages. So
sequence is finite.

GCT 2024 Joel David Hamkins



Universal algorithm Applications Infinitary analogues Infinitary applications

We claim all kn are nonstandard.

To see this, consider n = last successful stage in M. If k is standard,
reflect ZFk to transitive set above mn, contrary to definition.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage, k nonstandard, but below all ki .

Since stage n did not succeed, for every countable transitive m in LM

containing earlier mi and every a ∈ m, the structure ⟨m,∈⟩M does
have a covering end-extension in M to a model making every set in m
countable and satisfying ZFk+“object a was placed onto the
sequence at stage n, the last successful stage.”

This is a Π1
2 assertion. Absolute from LM to M to M ≺ M+ to M+[G].

Apply it to a covering set m = (Vθ)
M+

, and get a covering
end-extension of M, where object a is added as next/last object on
sequence, as desired.
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Process B

Intended for ω-standard models.

Proceed in stages. Stage n succeeds and an is defined, if there is
transitive set mn countable in L and countable λn, with mi ∈ mn and
λn < λi all earlier i , with λn ∈ mn and an ∈ mn, such that ⟨mn,∈⟩ has
no covering end-extension to a model ⟨N,∈N⟩ making every set in mn
countable and satisfying ZF+“process B places an on sequence at
stage n, the last successful stage,” and furthermore, this Π1

1 property
about (mn,an, λn) has rank λn.

Use L-least. The map n 7→ (mn,an, λn) is Σ1.

Use Gödel-Carnap to resolve circularity.

Since λn descend, there are only finitely many successful stages. So
sequence is finite.
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We claim all λn nonstandard.

Let n be last successful stage in M. The statement that mn has no
extension placing an onto sequence is actually false, since M does
this. So the tree is not actually well-founded. So λn is illfounded.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage.

Consider any a ∈ M. Go to M+[G] with countable covering set
m = (Vθ)

M+

. If m had no covering extension placing a onto sequence,
the rank would be well-founded, hence below all λi , so n would
succeed.

So there must be an extension after all, and this provides an
extension of M, as desired.
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Process C

We merge the two processes into a single Σ1 definition that
works in any countable model of ZFC, regardless of whether it
is ω-standard or not.

Proceed in stages. Follow either process A or B, but once A
succeeds, then use only process A.

Must ensure the witnesses are appropriately bounded in order
to prevent interference. But it works.

This proves the Σ1-definable universal finite sequence.
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OTM universal algorithm
We can now deduce the OTM universal algorithm as an
immediate consequence.

Theorem

There is OTM universal algorithm.
1 Enumerates a finite sequence of ordinals, provably in ZF.
2 In any countable M |= ZF, if sequence is s, then for any

s ⊆ t in M there is end-extension M ⊆ N in which the
computed sequence is t .

Key point: OTM computations can search for witnesses of Σ1
assertions, and so the Σ1-definable universal sequence is OTM
computable.
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Hints at a soft proof?
The universal algorithm for PA had a comparatively soft proof, my
petulant child algorithm.

But the Σ1 universal finite sequence goes through forcing and
classical descriptive set theory—same overall abstract idea, but it’s
more technical.

The infinitary computability perspective suggests the intriguing
possibility of a soft proof for the OTM result.

I am imagining an OTM searches for a proof in a suitable infinitary
logic from a suitable infinitary theory that this very algorithm does not
add on a specific ordinal next. Perhaps Barwise compactness
enables the extension property.

I don’t yet have a complete version of this argument.

It seems the ω-standard/nonstandard case division will remain
fundamental, and so perhaps the current arguments are already
achieving it.
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Generalization to Σm elementary end-extensions

In [Ham24], I have generalized to find a Σm+1 definable
sequence of ordinals

α0 α1 α2 · · · αn

with the universal extension property for Σm-elementary
end-extensions.

N

M

s
t

Every countable model M |= ZF with
sequence s has a Σm-elementary
end-extension N |= ZF realizing any
desired extension t .

If V = HOD, can translate this to all
objects, not just ordinals.
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Consequences

Rich collection of consequences for the universal finite
sequence

Any object can become definable

Pointwise definability comes by iterating this
Pointwise definability is a switch
No maximal Σm theory
Modal logic of end-extension potentialism is exactly S4
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The tree of top-extensions

M

N0

N1

N11
N10

Radical-branching potentialism.
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Pointwise definable extensions in set theory
Theorem (Hamkins)

Every countable model of ZF has a pointwise definable end
extension.

Indeed, it has such an extension satisfying
ZFC + V = L.

Somewhat more general version:

Theorem (Hamkins)

Every countable model of ZF with an inner model of a c.e.
theory ZFC that includes V = HOD has a pointwise definable
end-extension satisfying ZFC.

This realizes a certain resurrection property: whatever is true in
some inner model can become true again in an end-extension,
even a pointwise definable end-extension. e.g. Inner models of
large cardinals resurrected in end-extensions.
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
Σm-elementary pointwise definable end-extension.

Proof.

Build a tower of progressively elementary extensions

...
M3

M2

M1

M0

M0 ≺Σm M1 ≺Σm+1 M2 ≺Σm+2 M3 ≺Σm+3 · · ·

Put a0 last on the Σm-definable sequence.

Then a1 last on Σm+1-sequence, and so on.

Limit model N is a model of ZFC.

Can arrange that every element becomes definable. So
N is pointwise definable.
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Leibnizian extensions

And similarly, in joint work with myself and Gitman, we’ve
proved that every model of ZFC of size at most continuum has
an extension that is Leibnizian.
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Thank you.

Slides and articles available on http://jdh.hamkins.org.

Joel David Hamkins
O’Hara Professor of Logic
University of Notre Dame

VRF, Mathematical Institute
University of Oxford
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