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The universal algorithm

Theorem

There is a Turing machine program e with an amazing universal
extension property:
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There is a Turing machine program e with an amazing universal
extension property:

It enumerates a finite sequence, and PA proves this.
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The universal algorithm

Theorem
There is a Turing machine program e with an amazing universal
extension property:

It enumerates a finite sequence, and PA proves this.

In any model M |= PA, if the sequence is s, then for any
desired t, there is an end-extension in which e computes t.
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The universal algorithm

Theorem
There is a Turing machine program e with an amazing universal
extension property:

It enumerates a finite sequence, and PA proves this.

In any model M |= PA, if the sequence is s, then for any
desired t, there is an end-extension in which e computes t.

It's the empty sequence in the standard model.

History: Woodin [Woo11], Blanck and Enayat [BE17;
Bla17], simplified proof in [Ham18; Ham17].
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The universal algorithm

Theorem

There is a Turing machine program e with an amazing universal
extension property:

It enumerates a finite sequence, and PA proves this.

In any model M |= PA, if the sequence is s, then for any
desired t, there is an end-extension in which e computes t.

It's the empty sequence in the standard model.
History: Woodin [Woo11], Blanck and Enayat [BE17;
Bla17], simplified proof in [Ham18; Ham17].

Proof proceeds by a highly self-referential algorithm,
“the petulant child.”
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Warm up
Let’s warm up with the baby version.

Consider the program e that searches for a proof in PA that
program e does not produce a certain explicit finite output.
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Warm up
Let’s warm up with the baby version.

Infinitary applications

Consider the program e that searches for a proof in PA that
program e does not produce a certain explicit finite output.

When found, give exactly that output.

“The petulant child”
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Warm up

Let’s warm up with the baby version.

Consider the program e that searches for a proof in PA that
program e does not produce a certain explicit finite output.

When found, give exactly that output.
“The petulant child”

Observe: If PA is consistent, you cannot prove that e does not
have any particular output, since then it would have such an
output for the least instance.
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Warm up
Let’s warm up with the baby version.

Consider the program e that searches for a proof in PA that
program e does not produce a certain explicit finite output.

When found, give exactly that output.
“The petulant child”

Observe: If PA is consistent, you cannot prove that e does not
have any particular output, since then it would have such an
output for the least instance.

Conclusion: it is consistent with PA that this program has
whatever output you want.
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Warm up
Let’s warm up with the baby version.

Consider the program e that searches for a proof in PA that
program e does not produce a certain explicit finite output.

When found, give exactly that output.
“The petulant child”

Observe: If PA is consistent, you cannot prove that e does not
have any particular output, since then it would have such an
output for the least instance.

Conclusion: it is consistent with PA that this program has
whatever output you want.

(The extenson property of the universal algorithm is more.)
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Proof of the universal algorithm theorem

Now the full version, with my proof.

Let’s define the universal algorithm e.
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Let’s define the universal algorithm e.

m Suffices to have just the adding-one extension property.

GCT 2024 Joel David Hamkins



Universal algorithm

[e]e] lele]ele)

Proof of the universal algorithm theorem

Now the full version, with my proof.

Let’s define the universal algorithm e.

m Suffices to have just the adding-one extension property.

m Proceed in stages, releasing numbers in batches.
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Proof of the universal algorithm theorem

Now the full version, with my proof.

Let’s define the universal algorithm e.

m Suffices to have just the adding-one extension property.
m Proceed in stages, releasing numbers in batches.

m Stage n succeeds, if there is a proof from fragment PA_,
with k, smaller than all earlier k;, of a statement of the form
‘it is not the case that e has exactly n stages and re-
leases s at stage n,”

where s is a finite list of explicit numerical terms.
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Proof of the universal algorithm theorem

Now the full version, with my proof.

Let’s define the universal algorithm e.

m Suffices to have just the adding-one extension property.
m Proceed in stages, releasing numbers in batches.

m Stage n succeeds, if there is a proof from fragment PA_,
with k, smaller than all earlier k;, of a statement of the form
‘it is not the case that e has exactly n stages and re-

leases s at stage n,”
where s is a finite list of explicit numerical terms.

m In this case, release s at stage n. Proceed to next stage.

Joel David Hamkins
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Proof of universal algorithm

Succinctly:

The program e enumerates s at stage n, if it finds proof, in a
strictly smaller fragment of PA each time, that it does not do so
as its last stage.
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Proof of universal algorithm

Succinctly:

The program e enumerates s at stage n, if it finds proof, in a
strictly smaller fragment of PA each time, that it does not do so
as its last stage.

Thus, program e is a petulant child

Upon finding a rule forbidding certain behavior, it immediately
exhibits that behavior.
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Proof of universal algorithm

Succinctly:

The program e enumerates s at stage n, if it finds proof, in a
strictly smaller fragment of PA each time, that it does not do so
as its last stage.

Thus, program e is a petulant child

Upon finding a rule forbidding certain behavior, it immediately
exhibits that behavior.

Note

Use Kleene recursion theorem to find e, solving the circular
definition.
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Finiteness

Observation
The universal sequence is finite.
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Finiteness

Observation
The universal sequence is finite.

Proof.

The fragments PA,, must descend, and so there can be at most
finitely many successful stages.

Thus, the sequence enumerated by e will be finite.

And PA can undertake this argument. O
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Empty in the standard model

Claim
If stage nis successful, then kj, is nonstandard.
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Empty in the standard model

Claim
If stage nis successful, then kj, is nonstandard.

Proof.

Consider last successful stage n. The assertion
“e enumerates s with exactly n successful stages”

has complexity zg. For standard k, the Mostowski reflection
theorem shows PA I~ Con(Tr).

So M cannot have proof from PA, of something contrary to
actual behavior. So k, must be nonstandard. O
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Empty in the standard model

Claim
If stage nis successful, then k, is nonstandard.

Proof.

Consider last successful stage n. The assertion
“e enumerates s with exactly n successful stages”

has complexity zg. For standard k, the Mostowski reflection
theorem shows PA I~ Con(Tr).

So M cannot have proof from PA, of something contrary to
actual behavior. So k, must be nonstandard. O

In particular, e enumerates empty sequence in N.
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Let n = first unsuccessful stage. Pick k < k; nonstandard.
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Proving the extension property of e
Assume e enumerates sin Mand s C t.
Let n = first unsuccessful stage. Pick k < k; nonstandard.

Key Observation

Since stage n was not successful, M must think that
PAx + ‘e has exactly n stages and enumerates t”

is consistent.
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Proving the extension property of e
Assume e enumerates sin Mand s C t.
Let n = first unsuccessful stage. Pick k < k; nonstandard.

Key Observation

Since stage n was not successful, M must think that
PAx + ‘e has exactly n stages and enumerates t”

is consistent.

So M can build a Henkin model of this theory, N.
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Proving the extension property of e
Assume e enumerates sin Mand s C .

Let n = first unsuccessful stage. Pick k < k; nonstandard.

Key Observation

Since stage n was not successful, M must think that
PAx + ‘e has exactly n stages and enumerates t”

is consistent.

So M can build a Henkin model of this theory, N.

So N end-extends M and thinks e enumerates t. And N = PA
since k is nonstandard. This proves the theorem. O

GCT 2024 Joel David Hamkins



Universal algorithm Applications

Infinita E Infinitary applications
©000000000

Classical consequences

Several classical results in the model theory of arithmetic can
be seen as immediate consequences of the universal algorithm.

Let us explore a few examples.
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Maximal ¥ 1 diagrams

Corollary

No model of PA has a maximal X1 diagram.
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Maximal ¥ diagrams

Corollary

No model of PA has a maximal X1 diagram.

Proof.

If M = PA, then there is an unsuccessful stage n, which
becomes successful in an end-extension N.

So the assertion “stage nis successful” is a new X1 statement
about ntrue in N, false in M. O

For example, there is a diophantine equation, with coefficients
in M, having no solution in M, but it has a solution in N.
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Independent N9 sentences

Corollary (Kripke, Mostowski)

There are infinitely many independent N? sentences

o, M, 72, - - -

Any desired true/false pattern is consistent with PA.
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Independent N9 sentences

Corollary (Kripke, Mostowski)

There are infinitely many independent N? sentences

nos M 72, - - -

Any desired true/false pattern is consistent with PA.

Proof.
Let nx = “k does not appear on the universal sequence.” O
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Independent buttons

Corollary “independent buttons”

There are ¥9 sentences

PO, P15 P25 - --

all false in N and for any M = PA, any pattern / coded in M,
there is end-extension N with

Every px becomes true in N for k € I.
Truth of py is not changed for k ¢ 1.
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Independent buttons

Corollary “independent buttons”

There are ¥9 sentences

PO, P15 P25 - --

all false in N and for any M = PA, any pattern / coded in M,
there is end-extension N with

Every px becomes true in N for k € I.

Truth of py is not changed for k ¢ 1.

Proof.
Let px = “k appears on the universal sequence.” Ol

GCT 2024 Joel David Hamkins



Applications

0000@00000

Independent Orey sentences
Corollary “Independent switches”

There is an infinite list of independent Orey sentences
00, 01, 02, ...

For any M |= PA any pattern / coded in M, there is
end-extension N with

ok istruein N for k € I.
ok is false in N for k ¢ .
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Independent Orey sentences
Corollary “Independent switches”

There is an infinite list of independent Orey sentences
00, 01, 02, ...

For any M |= PA any pattern / coded in M, there is
end-extension N with
ok istruein N for k € I.

ok is false in N for k ¢ .

Proof.

Let oy = “k is amongst the numbers added at the last
stage.” O
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Flexible formulas

Corollary (Kripke)

For n > 2, there is a £9 formula ¢(x) that can be made so as to
agree with any desired Y9 formula (x, &) in an end-extension.

That is, for any M = PA and any such ¢ and a € M, there is an
end-extension N satisfying

Vx o(x) < ¥(x, a).

GCT 2024 Joel David Hamkins



Applications

00000®0000

Flexible formulas

Corollary (Kripke)

For n > 2, there is a £9 formula ¢(x) that can be made so as to
agree with any desired Y9 formula (x, &) in an end-extension.

That is, for any M = PA and any such ¢ and a € M, there is an
end-extension N satisfying

Vx o(x) < ¥(x, a).

Proof.

Let o(x) = ®(k, x, a) where (k, a) is last on the universal
sequence and ¢ is a universal X9 formula. O
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Arithmetic potentialism

Consider the models of PA under end-extension M Cg N.
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Arithmetic potentialism
Consider the models of PA under end-extension M Cg N.

This is a potentialist system, providing natural interpretation of
modal operators.

BEMEOpifthereis MC N E .
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Arithmetic potentialism
Consider the models of PA under end-extension M Cg N.

This is a potentialist system, providing natural interpretation of
modal operators.

BEMEOpifthereis MC N E .
m MpEOegifall M C Nhave N = ¢.
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Arithmetic potentialism
Consider the models of PA under end-extension M Cg N.

This is a potentialist system, providing natural interpretation of
modal operators.

BEMEOpifthereis MC N E .
m MpEOegifall M C Nhave N = ¢.

Theorem (Hamkins [Ham18])

The valid principles of arithmetic end-extensional potentialism
is exactly S4.
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Arithmetic potentialism
Consider the models of PA under end-extension M Cg N.

This is a potentialist system, providing natural interpretation of
modal operators.

BEMEOpifthereis MC N E .
m MpEOegifall M C Nhave N = ¢.

Theorem (Hamkins [Ham18])

The valid principles of arithmetic end-extensional potentialism
is exactly S4.

The proof uses the universal algorithm to code arbitrary finite
pretrees. At bottom, possibility branches like these trees.
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Generalization to X ,-elementary extensions

The universal algorithm generalizes to ¥, 1-definable finite
sequence, with the universal extension property with respect to
Y m-elementary end-extensions M <5y N.
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Generalization to X ,-elementary extensions

The universal algorithm generalizes to ¥, 1-definable finite
sequence, with the universal extension property with respect to
Y m-elementary end-extensions M <5y N.

Again every model M = PA can realize any
desired extension t in an end-extension N.
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Generalization to X ,-elementary extensions

The universal algorithm generalizes to ¥, 1-definable finite
sequence, with the universal extension property with respect to
Y m-elementary end-extensions M <5y N.

Again every model M = PA can realize any
desired extension t in an end-extension N.

But the difference now is that ¥, truth is
preserved between M and N.
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Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.
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Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.
Proof.

Build a tower of progressively elementary extensions

Mo € My <5, Mo <5, M3 <5, -
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Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.

Proof.

Build a tower of progressively elementary extensions

My € M, <5, Mo <5, Mz <5

- Put ay last on the X 4-definable sequence.
]
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Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.

Proof.

Build a tower of progressively elementary extensions
Mo € My <5, Mo <5, M3 <5, ---
- Put ay last on the X 4-definable sequence.
jie

w Then a; last on ¥»-sequence, and so on.

V

GCT 2024

Joel David Hamkins



Igorithm Applications

0000000080

Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.
Proof.

Build a tower of progressively elementary extensions

My € My <5, Mo <5, Mg <5, ---
- Put ay last on the X 4-definable sequence.
W Then a; last on ¥»-sequence, and so on.
V Limit model N is a model of PA.
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Pointwise definable end-extensions
Theorem (Hamkins [Ham24])

Every countable model of PA has a pointwise definable end
extension satisfying PA.

Proof.
Build a tower of progressively elementary extensions

S My € My <5, Mo <5, M3 <5, ---
v Put ay last on the X 4-definable sequence.
w Then a; last on ¥»-sequence, and so on.
Limit model N is a model of PA.

V Can arrange that every element becomes

definable. So N is pointwise definable.
[
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Leibnizian analogue
A model is Leibnizian if distinct individuals are discernible.
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Leibnizian analogue
A model is Leibnizian if distinct individuals are discernible.
In countable language, size at most continuum.
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Leibnizian analogue
A model is Leibnizian if distinct individuals are discernible.
In countable language, size at most continuum.

Theorem (Hamkins, Gitman)

Every model of PA of size at most the continuum admits a
Leibnizian extension. Indeed, for any particular natural number
m, the model admits a X ,-elementary Leibnizian extension.
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Leibnizian analogue
A model is Leibnizian if distinct individuals are discernible.
In countable language, size at most continuum.

Theorem (Hamkins, Gitman)

Every model of PA of size at most the continuum admits a
Leibnizian extension. Indeed, for any particular natural number
m, the model admits a X ,-elementary Leibnizian extension.

Proof strategy. Given My = PA of size at most continuum, construct a
progressively elementary tower

Mo < M < My < M3 =S 1 M, < M5 =T "
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Leibnizian analogue
A model is Leibnizian if distinct individuals are discernible.

In countable language, size at most continuum.

Theorem (Hamkins, Gitman)

Every model of PA of size at most the continuum admits a
Leibnizian extension. Indeed, for any particular natural number
m, the model admits a X ,-elementary Leibnizian extension.

Proof strategy. Given My = PA of size at most continuum, construct a
progressively elementary tower

Mo < M1 < Mz =< M3 <% a1 M4 =< M5 =T "
m Even stages, fully elementary. Create a countable set of points
from which previous elements are discernible.

m Odd stages, progressively elementary. Make those points
definable.
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Ordinal Turing machines

Let’s discuss infinitary analogues of the universal algorithm.
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Ordinal Turing machines

Let’s discuss infinitary analogues of the universal algorithm.

Consider infinite-time computation.

m Infinite time Turing machines (ITTM [HLOO]) have tape
length w, but run into transfinite time.
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Ordinal Turing machines

Let’s discuss infinitary analogues of the universal algorithm.

Consider infinite-time computation.

m Infinite time Turing machines (ITTM [HLOO]) have tape
length w, but run into transfinite time.

m Ordinal Turing machines (OTM [Koe05]) have tape length
Ord, run into transfinite time.
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Ordinal Turing machines

Let’s discuss infinitary analogues of the universal algorithm.

Consider infinite-time computation.

m Infinite time Turing machines (ITTM [HLOO]) have tape
length w, but run into transfinite time.

m Ordinal Turing machines (OTM [Koe05]) have tape length
Ord, run into transfinite time.

Programs are finite instruction sets. Tape cells have 0 and 1. At
limits, update head position and state with lim inf.
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Universal algorithm with ordinal Turing machines
| should like to describe the infinitary computable analogue of
the universal algorithm.

GCT 2024 Joel David Hamkins



Infinitary analogues
O®000000000000

Universal algorithm with ordinal Turing machines
| should like to describe the infinitary computable analogue of
the universal algorithm.

Theorem
There is OTM universal algorithm.
Enumerates a finite sequence of ordinals, provably in ZF.

In any countable M |= ZF, if sequence is s, then for any
s C tin M there is end-extension M C N in which the
computed sequence is t.

The program runs longer in the extension model and places the
desired additional ordinals onto the sequence.

Let’s getinto it.
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Universal definition in set theory
Woodin and | had proved the first set-theoretic analogue of the
universal algorithm [HW17].
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Universal definition in set theory
Woodin and | had proved the first set-theoretic analogue of the
universal algorithm [HW17].

There is a X, definable finite sequence
aOa a1a ctty an

with the universal extension property for top-extensions.
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Universal definition in set theory
Woodin and | had proved the first set-theoretic analogue of the
universal algorithm [HW17].

There is a X, definable finite sequence
aOa a1a ctty an

with the universal extension property for top-extensions.

N ¢ If sequence is s in countable M |= ZFC, then
" for any desired t, there is a top-extension
N = ZFC in which the sequence is t.
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Universal definition in set theory
Woodin and | had proved the first set-theoretic analogue of the
universal algorithm [HW17].

There is a ¥, definable finite sequence
aOa a1a et an

with the universal extension property for top-extensions.

N ¢ If sequence is s in countable M |= ZFC, then
* for any desired t, there is a top-extension
N = ZFC in which the sequence is t.

The definition (complex, sophisticated) essentially
looks for stages V., that have no end-extension
adding a next point a, even in any forcing extension,
and when found, adds a anyway. “petulant child”
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Y 1-definable universal sequence

Kameryn Williams and | proved [HW21] the X {-analogue.
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Y 1-definable universal sequence

Kameryn Williams and | proved [HW21] the X {-analogue.
There is a X1 definable sequence
aO7 a17 A an

with the universal extension property for end-extensions.
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Y 1-definable universal sequence
Kameryn Williams and | proved [HW21] the X {-analogue.
There is a X1 definable sequence
aO7 a17 A an

with the universal extension property for end-extensions.

N / If sequence is s in countable M = ZFC,
* then for any desired t, there is an
end-extension N = ZFC in which the
sequence is t.
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Y 1-definable universal sequence
Kameryn Williams and | proved [HW21] the ¥ {-analogue.
There is a X1 definable sequence
ap, at, ..., an

with the universal extension property for end-extensions.

N # If sequence is s in countable M = ZFC,
* then for any desired t, there is an
end-extension N = ZFC in which the

sequence is t.

In fact, can get N = ZFC for any theory
true in some inner model W of M.
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History

The universal finite sequence theorem continues a progression:
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History

The universal finite sequence theorem continues a progression:

m The universal algorithm, for end-extensions of models of
PA. (Woodin [Woo11]), [BE17; Bla17; Ham18]

GCT 2024 Joel David Hamkins



al algorithm Infinitary analogues Infinitary applications
00000 0000@000000000 000000

History

The universal finite sequence theorem continues a progression:

m The universal algorithm, for end-extensions of models of
PA. (Woodin [Woo11]), [BE17; Bla17; Ham18]

m The ¥,-definable universal finite set, for top-extensions of
models of ZFC. (Hamkins/Woodin [HW17])
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History

The universal finite sequence theorem continues a progression:

m The universal algorithm, for end-extensions of models of
PA. (Woodin [Woo11]), [BE17; Bla17; Ham18]

m The ¥,-definable universal finite set, for top-extensions of
models of ZFC. (Hamkins/Woodin [HW17])

m The X ;-definable universal finite sequence, for
end-extensions of models of ZFC. (Hamkins/Williams
[HW21])

m The ¥-definable version leads immediately to the OTM
universal algorithm.
m | subsequently proved the X, versions for every n.
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History

The universal finite sequence theorem continues a progression:

m The universal algorithm, for end-extensions of models of
PA. (Woodin [Woo11]), [BE17; Bla17; Ham18]

m The ¥,-definable universal finite set, for top-extensions of
models of ZFC. (Hamkins/Woodin [HW17])

m The X ;-definable universal finite sequence, for
end-extensions of models of ZFC. (Hamkins/Williams
[HW21])

m The ¥-definable version leads immediately to the OTM
universal algorithm.

m | subsequently proved the X, versions for every n.

In each case, a certain highly self-referential definable
sequence has a universal extension property for extensions of
the given type.
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Proof of the universal finite sequence theorem

Let’s give the ¥ {-definable universal finite sequence and prove
that it has the universal extension property.
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Proof of the universal finite sequence theorem

Let’s give the ¥ {-definable universal finite sequence and prove
that it has the universal extension property.

We describe two highly self-referential set-theoretic processes,
A and B, intended for the w-nonstandard models and
w-standard models, respectively.
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Universal algorithm

Proof of the universal finite sequence theorem

Let’s give the ¥ {-definable universal finite sequence and prove
that it has the universal extension property.

We describe two highly self-referential set-theoretic processes,
A and B, intended for the w-nonstandard models and
w-standard models, respectively.

Ultimately, we merge the two processes into a single definition
with the desired properties.
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Process A

Intended for w-nonstandard models.
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Process A

Intended for w-nonstandard models.

Proceeds in a sequence of stages, each adding one entry to the sequence.
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Process A

Intended for w-nonstandard models.
Proceeds in a sequence of stages, each adding one entry to the sequence.

Stage n succeeds and a, defined, if there is transitive m,,, countable in L,
containing all earlier m;, and natural number k,, smaller than all earlier k;,
such that a, € m, and (mj, €) has no covering end-extension to a model
(N, ey |= ZF,,, making every set in m, countable, and placing this very a,
onto its own A-sequence at stage n as the last element.
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Process A

Intended for w-nonstandard models.
Proceeds in a sequence of stages, each adding one entry to the sequence.

Stage n succeeds and a, defined, if there is transitive m,,, countable in L,
containing all earlier m;, and natural number k,, smaller than all earlier k;,
such that a, € m, and (mj, €) has no covering end-extension to a model
(N, ey |= ZF,,, making every set in m, countable, and placing this very a,
onto its own A-sequence at stage n as the last element.

Slogan: place an object onto the sequence, if we find a countable transitive

set having no covering end-extension in which we would have done so as the
next and last element.
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Process A

Intended for w-nonstandard models.
Proceeds in a sequence of stages, each adding one entry to the sequence.

Stage n succeeds and a, defined, if there is transitive m,,, countable in L,
containing all earlier m;, and natural number k,, smaller than all earlier k;,
such that a, € m, and (mj, €) has no covering end-extension to a model
(N, ey |= ZF,,, making every set in m, countable, and placing this very a,
onto its own A-sequence at stage n as the last element.

Slogan: place an object onto the sequence, if we find a countable transitive
set having no covering end-extension in which we would have done so as the
next and last element.

Always use the L-least witnesses. The map n +— (mq, ks, an) is X1.
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Process A

Intended for w-nonstandard models.

Proceeds in a sequence of stages, each adding one entry to the sequence.
Stage n succeeds and a, defined, if there is transitive m,,, countable in L,
containing all earlier m;, and natural number k,, smaller than all earlier k;,
such that a, € m, and (mn, €) has no covering end-extension to a model
(N, ey |= ZF,,, making every set in m, countable, and placing this very a,
onto its own A-sequence at stage n as the last element.

Slogan: place an object onto the sequence, if we find a countable transitive
set having no covering end-extension in which we would have done so as the
next and last element.

Always use the L-least witnesses. The map n +— (mq, ks, an) is X1.

Use Gddel-Carnap fixed-point lemma to resolve the circularity.
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Process A

Intended for w-nonstandard models.
Proceeds in a sequence of stages, each adding one entry to the sequence.

Stage n succeeds and a, defined, if there is transitive m,,, countable in L,
containing all earlier m;, and natural number k,, smaller than all earlier k;,
such that a, € m, and (mj, €) has no covering end-extension to a model
(N, ey |= ZF,,, making every set in m, countable, and placing this very a,
onto its own A-sequence at stage n as the last element.

Slogan: place an object onto the sequence, if we find a countable transitive
set having no covering end-extension in which we would have done so as the
next and last element.

Always use the L-least witnesses. The map n +— (mq, ks, an) is X1.

Use Gddel-Carnap fixed-point lemma to resolve the circularity.

Since k, descend, there will be only finitely many successful stages. So
sequence is finite.
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We claim all k, are nonstandard.
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We claim all k, are nonstandard.

To see this, consider n = last successful stage in M. If k is standard,
reflect ZF to transitive set above m,, contrary to definition.
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We claim all k, are nonstandard.

To see this, consider n = last successful stage in M. If k is standard,
reflect ZF to transitive set above m,, contrary to definition.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage, k nonstandard, but below all ;.
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We claim all k, are nonstandard.

To see this, consider n = last successful stage in M. If k is standard,
reflect ZF to transitive set above m,, contrary to definition.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage, k nonstandard, but below all k;.

Since stage n did not succeed, for every countable transitive min LM
containing earlier m; and every a € m, the structure (m, €)M does
have a covering end-extension in M to a model making every setin m
countable and satisfying ZF,+“object a was placed onto the
sequence at stage n, the last successful stage.”
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We claim all k, are nonstandard.

To see this, consider n = last successful stage in M. If k is standard,
reflect ZF to transitive set above m,, contrary to definition.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage, k nonstandard, but below all k;.

Since stage n did not succeed, for every countable transitive min LM
containing earlier m; and every a € m, the structure (m, €)M does
have a covering end-extension in M to a model making every setin m
countable and satisfying ZF,+“object a was placed onto the
sequence at stage n, the last successful stage.”

This is a N} assertion. Absolute from LM to M to M < M+ to M*[G].
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We claim all k, are nonstandard.

To see this, consider n = last successful stage in M. If k is standard,
reflect ZF to transitive set above m,, contrary to definition.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage, k nonstandard, but below all k;.

Since stage n did not succeed, for every countable transitive min LM
containing earlier m; and every a € m, the structure (m, €)M does
have a covering end-extension in M to a model making every setin m
countable and satisfying ZF,+“object a was placed onto the
sequence at stage n, the last successful stage.”

This is a N} assertion. Absolute from LM to M to M < M+ to M*[G].

Apply it to a covering set m = (V4)™', and get a covering
end-extension of M, where object a is added as next/last object on
sequence, as desired.
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Process B

Intended for w-standard models.
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Process B
Intended for w-standard models.

Proceed in stages. Stage n succeeds and aj, is defined, if there is
transitive set m, countable in L and countable \,, with m; € m, and
An < A all earlier i, with A\, € m, and a, € m,, such that (mj,, €) has
no covering end-extension to a model (N, V) making every set in m,
countable and satisfying ZF+“process B places a, on sequence at
stage n, the last successful stage,” and furthermore, this M} property
about (mp, an, An) has rank A,
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Process B
Intended for w-standard models.

Proceed in stages. Stage n succeeds and aj, is defined, if there is
transitive set m, countable in L and countable \,, with m; € m, and
An < A all earlier i, with A\, € m, and a, € m,, such that (mj,, €) has
no covering end-extension to a model (N, V) making every set in m,
countable and satisfying ZF+“process B places a, on sequence at
stage n, the last successful stage,” and furthermore, this M} property
about (mp, an, An) has rank A,

Use L-least. The map n+— (Mp, an, An) is 1.
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Process B
Intended for w-standard models.

Proceed in stages. Stage n succeeds and aj, is defined, if there is
transitive set m, countable in L and countable \,, with m; € m, and
An < A all earlier i, with A\, € m, and a, € m,, such that (mj,, €) has
no covering end-extension to a model (N, V) making every set in m,
countable and satisfying ZF+“process B places a, on sequence at
stage n, the last successful stage,” and furthermore, this M} property
about (mp, an, An) has rank A,

Use L-least. The map n+— (Mp, an, An) is 1.

Use Gddel-Carnap to resolve circularity.
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Process B
Intended for w-standard models.

Proceed in stages. Stage n succeeds and aj, is defined, if there is
transitive set m, countable in L and countable \,, with m; € m, and
An < A all earlier i, with A\, € m, and a, € m,, such that (mj,, €) has
no covering end-extension to a model (N, V) making every set in m,
countable and satisfying ZF+“process B places a, on sequence at
stage n, the last successful stage,” and furthermore, this M} property
about (mp, an, An) has rank A,

Use L-least. The map n+— (Mp, an, An) is 1.
Use Gddel-Carnap to resolve circularity.

Since )\, descend, there are only finitely many successful stages. So
sequence is finite.
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We claim all A, nonstandard.
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We claim all A\, nonstandard.
Let n be last successful stage in M. The statement that m, has no

extension placing a, onto sequence is actually false, since M does
this. So the tree is not actually well-founded. So A, is illfounded.
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We claim all A\, nonstandard.

Let n be last successful stage in M. The statement that m, has no
extension placing a, onto sequence is actually false, since M does
this. So the tree is not actually well-founded. So A, is illfounded.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage.
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We claim all A, nonstandard.

Let n be last successful stage in M. The statement that m, has no
extension placing a, onto sequence is actually false, since M does
this. So the tree is not actually well-founded. So A, is illfounded.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage.

Consider any a € M. Go to M*[G] with countable covering set

m = (V4)™". If m had no covering extension placing a onto sequence,
the rank would be well-founded, hence below all );, so n would
succeed.
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We claim all A, nonstandard.

Let n be last successful stage in M. The statement that m, has no
extension placing a, onto sequence is actually false, since M does
this. So the tree is not actually well-founded. So A, is illfounded.

Verify extension property. Suppose sequence is s in M. Let n be first
unsuccessful stage.

Consider any a € M. Go to M*[G] with countable covering set

m = (V4)™". If m had no covering extension placing a onto sequence,
the rank would be well-founded, hence below all );, so n would
succeed.

So there must be an extension after all, and this provides an
extension of M, as desired.
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Process C

We merge the two processes into a single ¥ definition that
works in any countable model of ZFC, regardless of whether it
is w-standard or not.
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Process C

We merge the two processes into a single ¥ definition that
works in any countable model of ZFC, regardless of whether it
is w-standard or not.

Proceed in stages. Follow either process A or B, but once A
succeeds, then use only process A.
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Process C

We merge the two processes into a single ¥ definition that
works in any countable model of ZFC, regardless of whether it
is w-standard or not.

Proceed in stages. Follow either process A or B, but once A
succeeds, then use only process A.

Must ensure the withesses are appropriately bounded in order
to prevent interference. But it works.

This proves the X {-definable universal finite sequence.
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OTM universal algorithm

We can now deduce the OTM universal algorithm as an
immediate consequence.
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OTM universal algorithm

We can now deduce the OTM universal algorithm as an
immediate consequence.

Theorem
There is OTM universal algorithm.
Enumerates a finite sequence of ordinals, provably in ZF.

In any countable M |= ZF, if sequence is s, then for any
s C tin M there is end-extension M C N in which the
computed sequence is t.

Key point: OTM computations can search for withesses of %4
assertions, and so the X {-definable universal sequence is OTM
computable.

GCT 2024 Joel David Hamkins



Infinitary analogues pplications

00000000000 0e0

Hints at a soft proof?
The universal algorithm for PA had a comparatively soft proof, my
petulant child algorithm.
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Hints at a soft proof?

The universal algorithm for PA had a comparatively soft proof, my
petulant child algorithm.

But the X1 universal finite sequence goes through forcing and
classical descriptive set theory—same overall abstract idea, but it’s
more technical.
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Hints at a soft proof?
The universal algorithm for PA had a comparatively soft proof, my
petulant child algorithm.

But the X1 universal finite sequence goes through forcing and
classical descriptive set theory—same overall abstract idea, but it’s
more technical.

The infinitary computability perspective suggests the intriguing
possibility of a soft proof for the OTM result.
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Hints at a soft proof?
The universal algorithm for PA had a comparatively soft proof, my
petulant child algorithm.

But the X1 universal finite sequence goes through forcing and
classical descriptive set theory—same overall abstract idea, but it’s
more technical.

The infinitary computability perspective suggests the intriguing
possibility of a soft proof for the OTM result.

I am imagining an OTM searches for a proof in a suitable infinitary
logic from a suitable infinitary theory that this very algorithm does not
add on a specific ordinal next. Perhaps Barwise compactness
enables the extension property.
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Hints at a soft proof?
The universal algorithm for PA had a comparatively soft proof, my
petulant child algorithm.

But the X1 universal finite sequence goes through forcing and
classical descriptive set theory—same overall abstract idea, but it’s
more technical.

The infinitary computability perspective suggests the intriguing
possibility of a soft proof for the OTM result.

I am imagining an OTM searches for a proof in a suitable infinitary
logic from a suitable infinitary theory that this very algorithm does not
add on a specific ordinal next. Perhaps Barwise compactness
enables the extension property.

| don’t yet have a complete version of this argument.

It seems the w-standard/nonstandard case division will remain
fundamental, and so perhaps the current arguments are already
achieving it.
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Generalization to X, elementary end-extensions

In [Ham24], | have generalized to find a ¥, definable
sequence of ordinals

Qg o Qo - Qp

with the universal extension property for ¥ ,,-elementary
end-extensions.
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Generalization to X, elementary end-extensions

In [Ham24], | have generalized to find a ¥, definable
sequence of ordinals

Qg o Qo - Qp

with the universal extension property for ¥ ,,-elementary
end-extensions.
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Generalization to X, elementary end-extensions

In [Ham24], | have generalized to find a ¥, definable
sequence of ordinals

Qg o Qo - Qp

with the universal extension property for ¥ ,,-elementary
end-extensions.

E N ; Every countable model M = ZF with
sequence s has a ¥ -elementary
end-extension N |= ZF realizing any
desired extension t.

Joel David Hamkins
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Umv ‘a}‘\‘flgorlthm :
Generalization to X, elementary end-extensions

In [Ham24], | have generalized to find a ¥, definable
sequence of ordinals

ap 4 Qo o+ Qp
with the universal extension property for ¥ ,,-elementary
end-extensions.

T N ; Every countable model M = ZF with
: sequence s has a ¥ -elementary
end-extension N |= ZF realizing any
desired extension t.

If V = HOD, can translate this to all
objects, not just ordinals.

Joel David Hamkins
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Consequences

Rich collection of consequences for the universal finite
sequence

m Any object can become definable
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Rich collection of consequences for the universal finite
sequence

m Any object can become definable
m Pointwise definability comes by iterating this
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Rich collection of consequences for the universal finite
sequence

m Any object can become definable
m Pointwise definability comes by iterating this
m Pointwise definability is a switch
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Consequences

Rich collection of consequences for the universal finite
sequence

m Any object can become definable

m Pointwise definability comes by iterating this
m Pointwise definability is a switch

m No maximal ¥, theory
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Consequences

Rich collection of consequences for the universal finite
sequence

m Any object can become definable

m Pointwise definability comes by iterating this

m Pointwise definability is a switch

m No maximal ¥, theory

m Modal logic of end-extension potentialism is exactly S4
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The tree of top-extensions

wﬂv

e

Radical-branching potentialism.
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Pointwise definable extensions in set theory
Theorem (Hamkins)

Every countable model of ZF has a pointwise definable end
extension.
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Pointwise definable extensions in set theory
Theorem (Hamkins)

Every countable model of ZF has a pointwise definable end
extension. Indeed, it has such an extension satisfying
ZFC+ V=L
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Pointwise definable extensions in set theory
Theorem (Hamkins)

Every countable model of ZF has a pointwise definable end
extension. Indeed, it has such an extension satisfying
ZFC+ V=L

Somewhat more general version:

Theorem (Hamkins)

Every countable model of ZF with an inner model of a c.e.
theory ZFC that includes V = HOD has a pointwise definable
end-extension satisfying ZFC.
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Pointwise definable extensions in set theory
Theorem (Hamkins)
Every countable model of ZF has a pointwise definable end

extension. Indeed, it has such an extension satisfying
ZFC+ V=L

Somewhat more general version:

Theorem (Hamkins)

Every countable model of ZF with an inner model of a c.e.
theory ZFC that includes V = HOD has a pointwise definable
end-extension satisfying ZFC.

This realizes a certain resurrection property: whatever is true in
some inner model can become true again in an end-extension,
even a pointwise definable end-extension. e.g. Inner models of

large cardinals resurrected in end-extensions.
GCT 2024 Joel David Hamkins
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
¥ m-elementary pointwise definable end-extension.
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
¥ m-elementary pointwise definable end-extension.

Proof.
Build a tower of progressively elementary extensions

Mo <5, Mi <5, M2 <5,, Mz <5, -
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
¥ m-elementary pointwise definable end-extension.

Proof.
Build a tower of progressively elementary extensions

: . : Mo =<=x M =Tt M =Tmi2 M, <Tpis
" Put a last on the ¥ ,-definable sequence.
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Pointwise definable extensions
Theorem (Hamkins)
Every countable model of ZFC + V = HOD has a
¥ m-elementary pointwise definable end-extension.

Proof.
Build a tower of progressively elementary extensions

[e]e]e] Jele]

Mo <5, Mi <5, M2 <5,, Mz <5, -

Put a last on the ¥ ,-definable sequence.
w Then a; last on ;. 1-sequence, and so on.
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
¥ m-elementary pointwise definable end-extension.

Proof.
Build a tower of progressively elementary extensions

» : ,. My <5, My <5, Mo <5, M3 <5 ., ---
Put a last on the ¥ ,-definable sequence.
Then a; last on ;. 1-sequence, and so on.
w Limit model N is a model of ZFC.
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Pointwise definable extensions
Theorem (Hamkins)

Every countable model of ZFC + V = HOD has a
Y m-elementary pointwise definable end-extension.

Proof.
Build a tower of progressively elementary extensions

» : : My <5, My <5, Mo <5, M3 <5 ., ---
Put a last on the ¥ ,-definable sequence.
Then a; last on ;. 1-sequence, and so on.
w Limit model N is a model of ZFC.

Can arrange that every element becomes definable. So
N is pointwise definable.

O

GCT 2024 Joel David Hamkins



Universal algorithm Applicatio Infinita E Infinitary applications
000000

Leibnizian extensions

And similarly, in joint work with myself and Gitman, we’ve
proved that every model of ZFC of size at most continuum has
an extension that is Leibnizian.
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Thank you.
Slides and articles available on http:/jdh.hamkins.org.

Joel David Hamkins
O’Hara Professor of Logic
University of Notre Dame

VRF, Mathematical Institute
University of Oxford
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