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This talk mainly includes joint work with:

Wojciech Aleksander Wołoszyn, Oxford University

Paper is now finally appeared [HW24], arxiv preprint in 2020,
blog post [Ham19].

See also prior work of Saveliev and Shapirovsky [SS16; SS18;
SS20], on which this works overlaps in several matters
independently.

Other prior/related work in [Ham03] [HW17] [HL08] [HL13]
[HLL15] [HL22] [Ham18] [HW21] [BBL23]
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Introducing modal model theory

In modal model theory, we consider a mathematical structure
within the context of a class of similar structures.

A potentialist system is a class of models W with an extension
relation M ⊑ N, refining the substructure relation.

Define the modalities:
1 M thinks φ is possible, written M |= φ, if there is an

extension M ⊑ N with N |= φ.
2 M thinks φ is necessary, written M |= φ, if every

extension M ⊑ N has N |= φ.
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Focus on Mod(T )

A principal case for modal model theory is the class Mod(T ) of
all models of first-order theory T .

All graphs
All groups
All fields
Models of PA.
Models of set theory.
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Illustrating the modal vocabulary

Every graph thinks “possibly the diameter is 2.”

Every group is possibly necessarily nonabelian.

Every field thinks possibly every element has a square root, but
this is necessarily not necessary.
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Distinguish several languages

1 L is language of structures in potentialist system.

2 L closes under , and Boolean connectives.
3 L is full first-order modal language, closing under modal

operators, Boolean connectives and quantifiers.
4 L ,@ extends with actuality operator @.
5 P is propositional modal logic. Propositional variables,

Boolean connectives and modal operators.

L assertions are substitution instances of P assertions
φ(p0, . . . ,pn) by L sentences:

φ(ψ0, . . . , ψn).
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Remarkable expressive power of modal graph theory

The language of modal graph theory has a remarkable
expressive power.

Let us illustrate this in several instances.
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Theorem

2-colorability is expressible in modal graph theory.

Proof.

G is 2-colorable ⇐⇒ possibly, there are adjacent nodes r and
b, such that every node is adjacent to exactly one of them and
adjacent nodes are connected to them oppositely.

G

→
G

r b
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Theorem

Connectivity is expressible in modal graph theory.

Proof.

Vertex x connected with y ⇐⇒ necessarily, any c adjacent to x , with
neighbors closed under adjacency, is adjacent to y .

x

y
→

x

y

c

∀c[(c ∼ x ∧ ∀u, v (c ∼ u ∧ u ∼ v ∧ v ̸= c → c ∼ v)) → c ∼ y ].
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Theorem

Finiteness is expressible in modal graph theory.

Proof.

G is finite ⇐⇒ possibly, there is n, whose neighbor graph is
connected and all degree 2 except two vertices of degree 1,
and all other nodes are adjacent to distinct neighbors of n.

G
→

G

n

start end
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Theorem

Countability is expressible in modal graph theory.

Proof.

G is countable ⇐⇒ possibly, there is ω, with neighbor graph
connected and all of degree 2 except one node, and all other
nodes adjacent to distinct neighbors of ω.

G
· · · →

G
· · ·

ω

start · · ·
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Theorem

Size at most continuum is expressible in modal graph theory.

Proof.

G has size at most continuum ⇐⇒ if we can associate every
node in the graph with a distinct subset of ω.

x y

ω

0 1 2 3 4 5 6 7 8 9 10 · · ·
n
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Much more is expressible in modal graph theory

Size ℵ1, ℵ2, . . .

Size ℵω, ℶω.
Size of the least ℶ-fixed point.
The least ℶ-hyper-fixed point.
Much more.

It turns out that a large fragment of set-theoretic truth is
interpretable in modal graph theory.
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Modal group theory

Let me similarly mention a few instances in modal group theory,
where we can express properties and features that are not
expressible in the first-order language of group theory.

We consider the class of all groups under the group extension
relation.

See also [BBL23].
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Being in group generated by

Wojciech proves:

The relation y ∈ ⟨x⟩ is definable in modal group theory

Namely, in any group G,

y ∈ ⟨x⟩ iff ∀z (zx = xz → zy = yz).

But it is not expressible in the first-order language of group
theory—take ultrapower of Z.
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Having finite order is expressible

“x has finite order” is expressible in modal group theory

x has finite order
if and only if

there is another generator of ⟨x⟩ other than x and x−1,
or x has order 1, 2, 3, 4, or 6.

Not expressible in first-order language of group theory—take
ultraproduct of Cn.

Being torsion is expressible in modal group theory

Torsion means every element has finite order.

Not expressible in language of first-order group theory.
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Modal model theory

Let us now begin to develop some of the elementary modal
model theory.

We focus on the case of Mod(T ) for a fixed first-order theory T .
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Two natural accessibility notions in Mod(T )

Direct extension M ⊆ N, for possibility M |= φ.

natural from potentialist point of view
poor algebraic properties: not convergent, not directed

Embedded extension M ⊂∼ N and possibility M |= φ.
mathematically natural, better algebraic properties

Fortunately, the two modalities coincide in Mod(T ):

Theorem

M |= φ[a] ⇐⇒ M |= φ[a].

Sam Adam-Day proved the two potentialist systems bisimilar.
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L theory determines L theory
Key Lemma

In Mod(T ) for any first order theory

M ≺L N if and only if M ≺ L N.

But it isn’t true for L .

Lemma

M ≡L N if and only if M ≡ L N.

(Appeared previously in work of Saveliev and Shapirovsky,
[SS18, statement (5), p.17],[SS20, statement (5), p.1005])

The lemma is not true for L .
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Theorem

Every L formula φ is equivalent in Mod(T ) to an infinitary
disjunction of infinitary conjunctions of L-assertions.

Proof.

Let T be the set of L-theories T of a model M |= φ.

Since the L theory determines the L theory,

φ ⇐⇒
∨

T∈T

∧
ψ∈T

ψ.

It’s not true for L .

Open Question

Is every L assertion equivalent to an assertion of Lω1,ω?
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Quantifier elimination

A theory admits quantifier elimination when every L assertion is
equivalent to a quantifier-free assertion.

Theorem

If T admits quantifier elimination, then also quantifier/modality
elimination and modality trivialization.

Modality elimination means that every modal assertion is
equivalent to a modality-free assertion.

Modality trivialization means φ is equivalent to φ.
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Modality trivialization

Modality trivialization means φ is equivalent to φ.

Theorem

For any first-order theory T , the following are equivalent:
1 T admits modality trivialization over all assertions in L .
2 T admits modality trivialization over all assertions in L.
3 T admits modality trivialization over all assertions in L.
4 T is model complete.

Theory T is model complete if submodels M ⊆ N are
elementary M ≺ N.
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Actuality operator

Augment the modal language with an actuality operator @,
which allows reference back to original world of evaluation.

In graph theory,

∃x∀y (x ∼ y ↔ (@y ∧ @∀z ¬y ∼ z))

asserts that possibly, there a node adjacent to all and only the
isolated nodes of the actual world.

Iterated semantics allow for a notion of relative actuality.
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Modal graph theory with actuality

Appears stronger than modal graph theory

can express equinumerosity of neighbor sets
can express well-foundedness of coded relations
can interpret set-theoretic truth ⟨V ,∈⟩.

Question

Is actuality @ expressible in modal graph theory?

The answer is no, confirming our conjecture.

We proved recently that @ sometimes allows you to define sets
not definable without @.
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Modal validities

A modal assertion φ(p1, . . . ,pn) is valid at world M in
potentialist system W for an allowed language if all substitution
instances φ(ψ1, . . . , ψn) arising for ψi in that language are true
at M in W.

This is often sensitive to the allowed language of substitution
instances, or whether parameters are allowed.
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Easy lower bounds

1 S4 is universally valid in potentialist systems.

2 So is the converse Barcan:

∀x φ(x) =⇒ ∀x φ(x)

3 If W is convergent, then S4.2 is valid for L -sentences.
4 If amalgamation, then S4.2 is valid with parameters.
5 If W is linearly pre-ordered, then S4.3 is valid with

parameters.
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Upper bounds via the control statement method

Switch: necessarily, s and ¬s.
Button: b.
Ratchet: sequence of buttons, each implies previous; can
push each without pushing next.
Railway switch: r and ¬r .
Railyard: finite tree of railway switches.

Theorem

1 If independent switches, then validities contained in S5.
2 If buttons+switches, then validities contained in S4.2.
3 If long ratchets+switches, then validities contained in S4.3.
4 If railyards, then validities are exactly S4.
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Validating S5

Theorem

1 Every model in Mod(T ) can be extended to one in which
S5 is valid for L sentences.

2 If T is ∀∃ axiomatizable, then every model can be extended
to one validating S5 for L assertions with parameters.

Chains of models argument.
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Theorem

A countable graph G validates S5 for L with parameters

φ(ā) → φ(ā)

if and only if G is the countable random graph.

Theorem

A graph G validates S5 for φ in L with parameters iff it
satisfies the theory of the countable random graph.

Theorem

G validates S5 for sentences iff G is universal for finite graphs.
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Validities in graphs

Theorem

Every graph G validates (for L assertions with parameters)
either exactly S4.2 or exactly S5.

If it has the finite pattern property, get S5. If not, there are
independent buttons and switches, so S4.2.
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General case Mod(T )

Theorem

A model M |= T validates S5 for L with parameters

φ(ā) → φ(ā)

if and only if M is existentially closed in Mod(T ).

This result explains what was important about the countable
random graph.
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if and only if M is existentially closed in Mod(T ).

This result explains what was important about the countable
random graph.

Introduction to modal model theory Joel David Hamkins



Introduction Modal graph theory Modal group theory Modal model theory Validities Varieties of potentialism

General case Mod(T )

Theorem

A model M |= T validates S5 for L with parameters
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Universal S5 is impossible

Theorem

If every model in Mod(T ) validates S5 for L assertions with
parameters, then T is model complete and consequently
admits modality trivialization.

So p ↔ p also is valid, and this is not part of S5.

Conclusion

The validities of Mod(T ) cannot be exactly S5.
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Varieties of potentialism

The modal language enables us to express sweeping general
principles describing the nature of our potentialist conception.

M

M1

M2

M3

Linear
inevitability

S4.3

M

M ′

M ′′

N

Directed
convergence

S4.2

M

M0

M1

M11
M10

Branching
possibility

S4
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Thank you.
Article is now available:

[HW24] Joel David Hamkins and Wojciech Aleksander
Wołoszyn, “Modal model theory,” Notre Dame Journal of Formal
Logic, 65:1(2024). http://jdh.hamkins.org/modal-model-theory.

Joel David Hamkins
Professor of Logic
Notre Dame
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