The math tea argument—must there be numbers we cannot describe or define?

Joel David Hamkins
O’Hara Professor of Philosophy and Mathematics
University of Notre Dame

Associate Faculty, Professor of Logic
University of Oxford

Pavia Logic Seminar, September 2022
The math tea argument

Heard at a good math tea anywhere:

“There must be real numbers we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions.”

Does this argument withstand scrutiny?
The math tea argument

Heard at a good math tea anywhere:

“There must be real numbers we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions.”

Does this argument withstand scrutiny?

“I can describe any number. Let me show you: you tell me a number, and I’ll tell you a description of it.”

–Horatio, age 8
Definability

An object r is *definable* in a structure \mathcal{M} if it is the unique object in that structure satisfying some assertion.

$$\mathcal{M} \models \varphi[x] \iff x = r.$$
Definability

An object \(r \) is *definable* in a structure \(\mathcal{M} \) if it is the unique object in that structure satisfying some assertion.

\[
\mathcal{M} \models \varphi[x] \iff x = r.
\]

A definable object has a property in a structure that only it has.
| Definability and the Math Tea argument, Pavia 2022 | Joel David Hamkins |

Definability

Real continuum $\langle \mathbb{R}, < \rangle$

No point is definable, since any two real numbers are automorphic by translation.
Definability

Real continuum \(\langle \mathbb{R}, < \rangle \)

No point is definable, since any two real numbers are automorphic by translation.

Automorphisms must fix definable elements.
Definability

Real continuum \(\langle \mathbb{R}, < \rangle \)

No point is definable, since any two real numbers are automorphic by translation.

Automorphisms must fix definable elements.

Additive group of integers \(\langle \mathbb{Z}, + \rangle \)
Definability

Real continuum $\langle \mathbb{R}, < \rangle$

No point is definable, since any two real numbers are automorphic by translation.

Automorphisms must fix definable elements.

Additive group of integers $\langle \mathbb{Z}, + \rangle$

The number 0 is definable, since it is the only additive idempotent

$$z = 0 \iff \langle \mathbb{Z}, + \rangle \models z + z = z.$$
Definability

Real continuum $\langle \mathbb{R}, < \rangle$

No point is definable, since any two real numbers are automorphic by translation.

Automorphisms must fix definable elements.

Additive group of integers $\langle \mathbb{Z}, + \rangle$

The number 0 is definable, since it is the only additive idempotent

$$z = 0 \iff \langle \mathbb{Z}, + \rangle \models z + z = z.$$

No other elements are definable, because negation $x \mapsto -x$ is an automorphism.
Pointwise definability

Ring of integers $\langle \mathbb{Z}, +, \cdot \rangle$

The number 1 is the unique multiplicative identity.
Pointwise definability

<table>
<thead>
<tr>
<th>Ring of integers $\langle \mathbb{Z}, +, \cdot \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number 1 is the unique multiplicative identity.</td>
</tr>
<tr>
<td>We can then define 2 as $1 + 1$ and -2 as the additive inverse, and so on.</td>
</tr>
</tbody>
</table>
Pointwise definability

Ring of integers $\langle \mathbb{Z}, +, \cdot \rangle$

The number 1 is the unique multiplicative identity.

We can then define 2 as $1 + 1$ and -2 as the additive inverse, and so on.

Every integer is definable in this structure.
Pointwise definability

Ring of integers \(\langle \mathbb{Z}, +, \cdot \rangle \)

The number 1 is the unique multiplicative identity.

We can then define 2 as \(1 + 1 \) and \(-2\) as the additive inverse, and so on.

Every integer is definable in this structure.

Thus, \(\langle \mathbb{Z}, +, \cdot \rangle \) is pointwise definable: every individual is definable.
Ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$

Note that the order $<$ is definable from algebraic structure

$$x < y \iff \exists a \neq 0 \quad x + a^2 = y.$$
Ordered real field \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \)

Note that the order \(< \) is definable from algebraic structure

\[
x < y \iff \exists a \neq 0 \quad x + a^2 = y.
\]

Which reals are definable?
Ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$

Note that the order $<$ is definable from algebraic structure

$$x < y \iff \exists a \neq 0 \ x + a^2 = y.$$

Which reals are definable?

- Every individual integer is definable.
Ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$

Note that the order $<$ is definable from algebraic structure

$$x < y \iff \exists a \neq 0 \ x + a^2 = y.$$

Which reals are definable?

- Every individual integer is definable.
- Every rational number:

 $$x = n/m \iff x \cdot (1 + \cdots + 1) = 1 + \cdots + 1.$$
Ordered real field \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \)

Note that the order \(<\) is definable from algebraic structure

\[
x < y \iff \exists a \neq 0 \quad x + a^2 = y.
\]

Which reals are definable?

- Every individual integer is definable.
- Every rational number:
 \[
 x = n/m \iff x \cdot (1 + \cdots + 1) = 1 + \cdots + 1.
 \]
- \(\sqrt{2} \) is definable:
 \[
 x = \sqrt{2} \iff (0 < x) \land (x^2 = 2).
 \]
Ordered real field \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \)

Note that the order \(<\) is definable from algebraic structure

\[
x < y \iff \exists a \neq 0 \ x + a^2 = y.
\]

Which reals are definable?

- Every individual integer is definable.
- Every rational number:

 \[
 x = \frac{n}{m} \iff x \cdot (1 + \cdots + 1) = 1 + \cdots + 1.
 \]

- \(\sqrt{2}\) is definable:

 \[
 x = \sqrt{2} \iff (0 < x) \land (x^2 = 2).
 \]

- Every algebraic number is definable.
Ordered real field

But only algebraic numbers are definable in \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \).

Theorem (Tarski)

In the ordered real field \(\langle \mathbb{R}, +, \cdot, 0, 1 \rangle \), *every formula* \(\varphi(x) \) *is equivalent to a quantifier-free formula.*

One begins to see this by recalling

\[
\exists x \ ax^2 + bx + c = 0 \iff b^2 - 4ac \geq 0.
\]
Ordered real field

But only algebraic numbers are definable in \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \).

Theorem (Tarski)

In the ordered real field \(\langle \mathbb{R}, +, \cdot, 0, 1 \rangle \), *every formula* \(\varphi(x) \) *is equivalent to a quantifier-free formula.*

One begins to see this by recalling

\[
\exists x \ ax^2 + bx + c = 0 \iff b^2 - 4ac \geq 0.
\]

Corollary

The field of real algebraic numbers \(\mathbb{A} \) *is an elementary substructure of* \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \).*
Corollary

There is a computable procedure to decide truth of any statement in $\langle \mathbb{R}, +, \cdot, 0, 1 \rangle$.

Corollary

Cartesian geometry (in any finite dimension) is decidable.

Geometry is finished! Well...
Corollary

There is a computable procedure to decide truth of any statement in \(\langle \mathbb{R}, +, \cdot, 0, 1 \rangle \).

Corollary

Cartesian geometry (in any finite dimension) is decidable.

Geometry is finished! Well...

Geometry escapes Gödel’s incompleteness theorem.
Corollary

There is a computable procedure to decide truth of any statement in $\langle \mathbb{R}, +, \cdot, 0, 1 \rangle$.

Corollary

Cartesian geometry (in any finite dimension) is decidable.

Geometry is finished! Well...

Geometry escapes Gödel’s incompleteness theorem.

The algebraic numbers are a real-closed field. So the elimination result works in the algebraic numbers. So \mathbb{A} is an elementary substructure. So every definable element is algebraic.
Leibnizian models

A model M is Leibnizian if any two distinct points have different properties: if $a \neq b$, then there is some formula φ such that

$$M \models \varphi(a) \land \neg \varphi(b).$$
Leibnizian models

A model M is Leibnizian if any two distinct points have different properties: if $a \neq b$, then there is some formula φ such that

$$M \models \varphi(a) \land \neg \varphi(b).$$

Pointwise definability

Every individual has a property that only it has.

Leibnizian

Any two distinct individuals have different properties.
Leibnizian models

A model M is *Leibnizian* if any two distinct points have different properties: if $a \neq b$, then there is some formula φ such that

$$M \models \varphi(a) \land \neg \varphi(b).$$

Pointwise definability

Every individual has a property that only it has.

Leibnizian

Any two distinct individuals have different properties.

Question

Are these notions the same?
Leibnizian vs. pointwise definable models

Consider the ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.
Consider the ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.

This model is Leibnizian, because any two reals have a rational number between them. Being larger or smaller than a specific rational number is expressible.
Leibnizian vs. pointwise definable models

Consider the ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.

This model is Leibnizian, because any two reals have a rational number between them. Being larger or smaller than a specific rational number is expressible.

So, we can tell any two real numbers apart.
Leibnizian vs. pointwise definable models

Consider the ordered real field \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \).

This model is Leibnizian, because any two reals have a rational number between them. Being larger or smaller than a specific rational number is expressible.

So, we can tell any two real numbers apart.

But the model is not pointwise definable, because it is uncountable, and there are only countably many definitions.
Leibnizian vs. pointwise definable models

Consider the ordered real field $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.

This model is Leibnizian, because any two reals have a rational number between them. Being larger or smaller than a specific rational number is expressible.

So, we can tell any two real numbers apart.

But the model is not pointwise definable, because it is uncountable, and there are only countably many definitions.

This is a successful instance of the Math Tea argument.
Question

Is there a Leibnizian structure with no definable elements?
Question

Is there a Leibnizian structure with *no* definable elements?

Yes. Consider $\langle \mathbb{Z}, <, A \rangle$ with a “random” predicate $A \subseteq \mathbb{Z}$, via the coin-flipping measure.
Question

Is there a Leibnizian structure with no definable elements?

Yes. Consider $\langle \mathbb{Z}, <, A \rangle$ with a “random” predicate $A \subseteq \mathbb{Z}$, via the coin-flipping measure.

If A is not periodic, then Leibnizian.
Question

Is there a Leibnizian structure with \textit{no} definable elements?

Yes. Consider $\langle \mathbb{Z}, <, A \rangle$ with a “random” predicate $A \subseteq \mathbb{Z}$, via the coin-flipping measure.

If A is not periodic, then Leibnizian.

But almost surely, no element is definable.

- If $\varphi[n]$, then $\Pr(\varphi(n)) > 0$.
Question

Is there a Leibnizian structure with no definable elements?

Yes. Consider $\langle \mathbb{Z}, <, A \rangle$ with a “random” predicate $A \subseteq \mathbb{Z}$, via the coin-flipping measure.

If A is not periodic, then Leibnizian.

But almost surely, no element is definable.

- If $\varphi[n]$, then $\Pr(\varphi(n)) > 0$.
- But by homogeneity, $\Pr(\varphi(n)) = \Pr(\varphi(m))$.
Question

Is there a Leibnizian structure with \(no \) definable elements?

Yes. Consider \(\langle \mathbb{Z}, <, A \rangle \) with a “random” predicate \(A \subseteq \mathbb{Z} \), via the coin-flipping measure.

If \(A \) is not periodic, then Leibnizian.

But almost surely, no element is definable.

- If \(\varphi[n] \), then \(\Pr(\varphi(n)) > 0 \).
- But by homogeneity, \(\Pr(\varphi(n)) = \Pr(\varphi(m)) \).
- So almost surely, \(\varphi \) holds of many \(n \).
Question

Is there a Leibnizian structure with *no* definable elements?

Yes. Consider \(\langle \mathbb{Z}, <, A \rangle \) with a “random” predicate \(A \subseteq \mathbb{Z} \), via the coin-flipping measure.

If \(A \) is not periodic, then Leibnizian.

But almost surely, no element is definable.

- If \(\varphi[n] \), then \(\Pr(\varphi(n)) > 0 \).
- But by homogeneity, \(\Pr(\varphi(n)) = \Pr(\varphi(m)) \).
- So almost surely, \(\varphi \) holds of many \(n \).

Note that \(\langle \mathbb{Z}, <, A \rangle \) is rigid, even though it has no definable elements.
More structure

As we add structure, we can define more real numbers.
More structure

As we add structure, we can define more real numbers.

Trigonometric real field $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$

Can now define π.
More structure

As we add structure, we can define more real numbers.

Trigonometric real field $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$

Can now define π.

Can define \mathbb{Z} as a subset.
More structure

As we add structure, we can define more real numbers.

Trigonometric real field $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$

Can now define π.

Can define \mathbb{Z} as a subset.

It follows that the theory of $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$ is not decidable.
More structure

As we add structure, we can define more real numbers.

Trigonometric real field $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$

Can now define π.

Can define \mathbb{Z} as a subset.

It follows that the theory of $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$ is not decidable.

But also, every arithmetic real & every projective real is definable here.
More structure

As we add structure, we can define more real numbers.

Trigonometric real field $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$

Can now define π.

Can define \mathbb{Z} as a subset.

It follows that the theory of $\langle \mathbb{R}, +, \cdot, 0, 1, \sin \rangle$ is not decidable.

But also, every arithmetic real & every projective real is definable here.

In particular, every computable real number and much more is definable.
Computable numbers

Due to Alan Turing
Computable numbers

Due to Alan Turing

Idea: real number z is computable if we can somehow compute it.
Computable numbers

Due to Alan Turing

Idea: real number z is computable if we can somehow compute it.

First attempt (Turing’s original attempt): compute decimal digits of z.
Computable numbers

Due to Alan Turing

Idea: real number z is computable if we can somehow compute it.

First attempt (Turing’s original attempt): compute decimal digits of z.

Problem: given programs for a, b, we cannot compute digits of $a + b$.

\[
\begin{align*}
a &= 0.343434343434 \ldots \\
+ b &= 0.656565656565 \ldots \\
\hline
a + b &= 0.999999999999 \ldots
\end{align*}
\]
Computable numbers

Due to Alan Turing

Idea: real number z is computable if we can somehow compute it.

First attempt (Turing's original attempt): compute decimal digits of z.

Problem: given programs for a, b, we cannot compute digits of $a + b$.

\[
\begin{align*}
a &= 0.343434343434 \ldots \\
+ \quad b &= 0.656565656565 \ldots \\
\hline
a + b &= 0.999999999999 \ldots
\end{align*}
\]

Better idea: use rational approximations to z, to within a specified accuracy. Very robust conception.
More structure, more context \rightarrow more definability

Which real numbers are definable?

- Nothing is definable in $\langle \mathbb{R}, < \rangle$.
More structure, more context → more definability

Which real numbers are definable?

- Nothing is definable in $\langle \mathbb{R}, < \rangle$.
- Algebraic reals are definable in $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.
More structure, more context → more definability

Which real numbers are definable?

- Nothing is definable in $\langle \mathbb{R}, < \rangle$.
- Algebraic reals are definable in $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.
- Projective reals definable in $\langle \mathbb{R}, +, \cdot, 0, 1, \mathbb{Z}, \sin, e^x, \ldots \rangle$.
More structure, more context \rightarrow more definability

Which real numbers are definable?

- Nothing is definable in $\langle \mathbb{R}, < \rangle$.
- Algebraic reals are definable in $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.
- Projective reals definable in $\langle \mathbb{R}, +, \cdot, 0, 1, \mathbb{Z}, \sin, e^x, \ldots \rangle$.
- Even more in $\langle H_{\omega_2}, \in \rangle$ or in $\langle V_{\omega+5}, \in \rangle$.
More structure, more context \rightarrow more definability

Which real numbers are definable?

- Nothing is definable in $\langle \mathbb{R}, < \rangle$.
- Algebraic reals are definable in $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.
- Projective reals definable in $\langle \mathbb{R}, +, \cdot, 0, 1, \mathbb{Z}, \sin, e^x, \ldots \rangle$
- Even more in $\langle H_{\omega_2}, \in \rangle$ or in $\langle V_{\omega+5}, \in \rangle$.
- $\langle V_{\omega+\omega}, \in \rangle \ldots$
More structure, more context → more definability

Which real numbers are definable?

- Nothing is definable in $\langle \mathbb{R}, < \rangle$.
- Algebraic reals are definable in $\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle$.
- Projective reals definable in $\langle \mathbb{R}, +, \cdot, 0, 1, \mathbb{Z}, \sin, e^x, \ldots \rangle$.
- Even more in $\langle H_{\omega_2}, \in \rangle$ or in $\langle V_{\omega+5}, \in \rangle$.
- $\langle V_{\omega+\omega}, \in \rangle$ \ldots

Consider the real $0.110101110 \ldots$, where n bit is 1, if the generalized continuum hypothesis holds at \aleph_n, otherwise 0.
More structure, more context → more definability

Which real numbers are definable?

- Nothing is definable in \(\langle \mathbb{R}, < \rangle \).
- Algebraic reals are definable in \(\langle \mathbb{R}, +, \cdot, 0, 1, < \rangle \).
- Projective reals definable in \(\langle \mathbb{R}, +, \cdot, 0, 1, \mathbb{Z}, \sin, e^x, \ldots \rangle \)
- Even more in \(\langle H_{\omega_2}, \in \rangle \) or in \(\langle V_{\omega+5}, \in \rangle \).
- \(\langle V_{\omega+\omega}, \in \rangle \ldots \)

Consider the real 0.110101110\(\ldots\), where \(n\) bit is 1, if the generalized continuum hypothesis holds at \(\aleph_n\), otherwise 0.

In trying to define more objects, we are inevitably drawn to expand the language and to extend the structure.
Cheating

It would be a kind of cheating to define an object r in a structure or language that was itself not definable:
Cheating

It would be a kind of cheating to define an object r in a structure or language that was itself not definable:

- such as a constant with value r,

Cheating

It would be a kind of cheating to define an object r in a structure or language that was itself not definable:

- such as a constant with value r,
- a unary relation holding only at r,
It would be a kind of cheating to define an object \(r \) in a structure or language that was itself not definable:

- such as a constant with value \(r \),
- a unary relation holding only at \(r \),
- or to define objects in \(\langle V_\alpha, \in \rangle \) when \(\alpha \) is not itself definable. (This amounts to using \(\alpha \) as a parameter.)
Cheating

It would be a kind of cheating to define an object \(r \) in a structure or language that was itself not definable:

- such as a constant with value \(r \),
- a unary relation holding only at \(r \),
- or to define objects in \(\langle V_\alpha, \in \rangle \) when \(\alpha \) is not itself definable. (This amounts to using \(\alpha \) as a parameter.)

We are thereby pushed:

- to allow only countable languages, and
- to consider only structures that are themselves definable with respect to the set-theoretic background \(\langle V, \in \rangle \).
The Math Tea Argument

“There must be real numbers we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions.”
The Math Tea Argument

“There must be real numbers we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions.”

Does it withstand scrutiny?
The Math Tea Argument

“There must be real numbers we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions.”

Does it withstand scrutiny?

Well, it’s complicated.
In a fixed structure

In a fixed set-sized structure \(\mathcal{M} \) in a countable language and with all the real numbers in it, the math tea argument is fine: there are only countably many definitions, but uncountably many reals.

We simply associate each definable object \(r \) with a formula \(\psi_r \) that defines it. With access to such a definability map

\[
\psi_r \mapsto r,
\]

we may diagonalize against it to produce a real that is not definable.
Meta-mathematical obstacle

When defining reals r over the full set-theoretic universe $\langle V, \in \rangle$, however, a subtle meta-mathematical obstacle arises:

The property of being definable in $\langle V, \in \rangle$ is not first-order expressible in set theory.
Meta-mathematical obstacle

When defining reals r over the full set-theoretic universe $\langle V, \in \rangle$, however, a subtle meta-mathematical obstacle arises:

The property of being definable in $\langle V, \in \rangle$ is not first-order expressible in set theory.

As in Tarski’s theorem on the non-definability of truth, in general we may have no way to express “x is defined by formula ψ.”
Meta-mathematical obstacle

When defining reals r over the full set-theoretic universe $\langle V, \in \rangle$, however, a subtle meta-mathematical obstacle arises:

The property of being definable in $\langle V, \in \rangle$ is not first-order expressible in set theory.

As in Tarski’s theorem on the non-definability of truth, in general we may have no way to express “x is defined by formula ψ”.

The key subtlety is that if we lack the association of definition with object defined, we cannot undertake the diagonalization to produce the non-definable real.
Reducing truth to definability

Sentence σ is true if and only if the assertion

$$\sigma \land \forall y \ (y \notin x)$$

defines the emptyset, $x = \emptyset$.

Reducing truth to definability

Sentence σ is true if and only if the assertion

$$\sigma \land \forall y \ (y \notin x)$$

defines the emptyset, $x = \emptyset$.

If we could express the relation

“object x is definable by formula ψ”

in a uniform manner, therefore, we would be able to define a truth predicate.
Reducing truth to definability

Sentence σ is true if and only if the assertion

$$\sigma \land \forall y \ (y \notin x)$$

defines the emptyset, $x = \emptyset$.

If we could express the relation

“object x is definable by formula ψ”

in a uniform manner, therefore, we would be able to define a truth predicate.

By Tarski’s theorem on the nondefinability of truth, this is impossible.
Metamathematical issues for the Math Tea argument

If the Math Tea argument were correct, then one might expect it to work in any model of set theory.
Metamathematical issues for the Math Tea argument

If the Math Tea argument were correct, then one might expect it to work in any model of set theory.

We might expect that in any model of ZFC, there must be real numbers that are not definable in that model.
Metamathematical issues for the Math Tea argument

If the Math Tea argument were correct, then one might expect it to work in any model of set theory.

We might expect that in any model of ZFC, there must be real numbers that are not definable in that model.

But that isn’t true.
Pointwise definable models of set theory

In fact, we have an abundance of pointwise definable models of set theory.
Pointwise definable models of set theory

In fact, we have an abundance of pointwise definable models of set theory.

Theorem

It is relatively consistent with axioms of ZFC set theory that every real number, every function, every topological space, every set, is definable.
In fact, we have an abundance of pointwise definable models of set theory.

Theorem

It is relatively consistent with axioms of ZFC set theory that every real number, every function, every topological space, every set, is definable.

I shall give several proofs.
Motivating question

To what extent is it possible that every real or indeed, every object in the set-theoretic universe, is definable without parameters?
Motivating question

To what extent is it possible that every real or indeed, every object in the set-theoretic universe, is definable without parameters?

This is what it would be like if the set-theoretic universe were pointwise definable.
Easy folklore observations

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.</td>
</tr>
</tbody>
</table>
Easy folklore observations

Theorem

If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any $M \models \text{ZFC} + V = \text{HOD}$.
Easy folklore observations

Theorem

If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any $M \models \text{ZFC} + V = \text{HOD}$. Definable Skolem functions.
Easy folklore observations

Theorem

If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any $M \models \text{ZFC} + V = \text{HOD}$. Definable Skolem functions.
Set of definable elements closed under the these Skolem functions, hence elementary, hence pointwise definable.
Easy folklore observations

Theorem

If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any $M \models ZFC + V = HOD$. Definable Skolem functions. Set of definable elements closed under the these Skolem functions, hence elementary, hence pointwise definable. So every completion of $ZFC + V = HOD$ has a pointwise definable model.
Easy folklore observations

Theorem

If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any $M \models ZFC + V = \text{HOD}$. Definable Skolem functions. Set of definable elements closed under the these Skolem functions, hence elementary, hence pointwise definable.

So every completion of $ZFC + V = \text{HOD}$ has a pointwise definable model.

By Gödel-Rosser, there are continuum many completions.
Easy folklore observations

Theorem

If ZFC is consistent, then there are continuum many non-isomorphic pointwise definable models of ZFC.

Proof.

Consider any $M \models ZFC + V = \text{HOD}$. Definable Skolem functions. Set of definable elements closed under the these Skolem functions, hence elementary, hence pointwise definable.

So every completion of $ZFC + V = \text{HOD}$ has a pointwise definable model.

By Gödel-Rosser, there are continuum many completions.

Pointwise definable models with same theory are isomorphic. So these models are exactly all the pointwise definable models of ZFC.
Characterization of pointwise definability

That idea is fully general.

Observation

The following are equivalent:

1. M is a pointwise definable model of ZFC.
2. M consists of the definable elements of a model of $\text{ZFC} + V = \text{HOD}$.
3. M is a prime model of $\text{ZFC} + V = \text{HOD}$.

Pointwise definability is a strong form of $V = \text{HOD}$.

We might introduce the notation $V = D$ or $V = \text{HD}$, but we don’t want to suggest that pointwise definability is first-order expressible.
Transitive pointwise definable models

Theorem

If there is a transitive model of ZFC, then there are continuum many transitive pointwise-definable models of ZFC.
Transitive pointwise definable models

Theorem

If there is a transitive model of ZFC, then there are continuum many transitive pointwise-definable models of ZFC.

Proof.

Fix transitive $N \models ZFC + V = \text{HOD}$. The definable elements of N form an elementary substructure, whose Mostowski collapse is pointwise definable.
Transitive pointwise definable models

Theorem

If there is a transitive model of ZFC, then there are continuum many transitive pointwise-definable models of ZFC.

Proof.

Fix transitive $N \models \text{ZFC} + V = \text{HOD}$. The definable elements of N form an elementary substructure, whose Mostowski collapse is pointwise definable.

For continuum many such models, force to add a Cohen real $N[c]$, and then force $V = \text{HOD}$ in $N[c][G]$ by coding into the GCH pattern, and make c definable. The definable elements of $N[c][G]$ include c and have pointwise definable Mostowski collapse. There is a perfect set of such c.
Minimal Transitive Model

Theorem

The minimal transitive model of \(\text{ZFC} \) is pointwise definable.
Minimal Transitive Model

Theorem

The minimal transitive model of ZFC is pointwise definable.

This model is known as the Shepherdson-Cohen model—it is the smallest L_α that is a model of ZFC.
Minimal Transitive Model

Theorem

The minimal transitive model of ZFC is pointwise definable.

This model is known as the Shepherdson-Cohen model—it is the smallest L_α that is a model of ZFC.

Proof.

By condensation, the definable hull of \emptyset in L_α collapses to L_α, and so every element of L_α is definable in L_α. □
Minimal Transitive Model

Theorem

The minimal transitive model of ZFC is pointwise definable.

This model is known as the Shepherdson-Cohen model—it is the smallest L_α that is a model of ZFC.

Proof.

By condensation, the definable hull of \emptyset in L_α collapses to L_α, and so every element of L_α is definable in L_α. □

The argument generalizes to show that the next-least ZFC-model L_β after L_α is also pointwise definable, and indeed pointwise definability is pervasive in the countable L-hierarchy.
Pointwise definable ZFC extensions

The HOD-based arguments achieve pointwise definability by casting out the non-definable elements.
Pointwise definable ZFC extensions

The HOD-based arguments achieve pointwise definability by casting out the non-definable elements.

Let me now explain how to achieve pointwise definability by adding new elements.
The HOD-based arguments achieve pointwise definability by casting out the non-definable elements.

Let me now explain how to achieve pointwise definability by adding new elements.

Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proved by myself, Linetsky, and Reitz in [HLR13]. Mentioned independently by Enayat in [Ena05].
Simpson’s Theorem

The proof uses a PA result of Simpson, applied to ZFC.

Theorem (Simpson 1974)

Let \(\langle M, \in \rangle \) be a countable model of ZFC. Then, there is an \(M \)-generic class \(U \subseteq M \) such that \(\langle M, \in, U \rangle \models ZFC(U) \) and every element of \(M \) is definable in \(\langle M, \in, U \rangle \).

Proof.

Use \(Q = \text{Add} (\text{ORD}, 1) \). Enumerate sets of ordinals of \(M \) as \(\langle a_n \mid n < \omega \rangle \). Enumerate dense classes \(\langle D_n \mid n < \omega \rangle \), where \(D_n \) is defined by \(\varphi_n (x, a_i)_{i < n} \). Define descending \(p_n \) so that \(p_{n+1} \) is the shortest extension of \(p_n \) in \(D_n \), followed by a block listing \(a_n \) and end-marker. Resulting filter \(U \subset \text{ORD} \) is \(M \)-generic, but every \(a_n \) is definable in \(\langle M, \in, U \rangle \).
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model $\langle M, \in^M \rangle \models ZFC$.
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model $\langle M, \in^M \rangle \models \text{ZFC}$.

- First step. (Simpson) Find M-generic $U \subseteq \text{Ord}^M$ via $\text{Add}(\text{Ord}, 1)$ such that $\langle M, \in^M, U \rangle$ is pointwise definable.
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model $\langle M, \in^M \rangle \models ZFC$.

- First step. (Simpson) Find M-generic $U \subseteq \text{Ord}^M$ via $\text{Add}(\text{Ord}, 1)$ such that $\langle M, \in^M, U \rangle$ is pointwise definable.
 - Enumerate elts of M as a_0, a_1, a_2, \ldots
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model \(\langle M, \in^M \rangle \models ZFC \).

- First step. (Simpson) Find \(M \)-generic \(U \subseteq \text{Ord}^M \) via \(\text{Add}(\text{Ord}, 1) \) such that \(\langle M, \in^M, U \rangle \) is pointwise definable.
 - Enumerate els of \(M \) as \(a_0, a_1, a_2, \ldots \)
 - Enumerate dense classes \(D_0, D_1, D_2, \ldots \)
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model $\langle M, \in^M \rangle \models \text{ZFC}$.

- First step. (Simpson) Find M-generic $U \subseteq \text{Ord}^M$ via $\text{Add}(\text{Ord}, 1)$ such that $\langle M, \in^M, U \rangle$ is pointwise definable.
 - Enumerate elts of M as a_0, a_1, a_2, \ldots
 - Enumerate dense classes D_0, D_1, D_2, \ldots
 - Build U by meeting each D_n minimally, then coding a_n.
Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model $\langle M, \in^M \rangle \models ZFC$.

- First step. (Simpson) Find M-generic $U \subseteq \text{Ord}^M$ via $\text{Add}(\text{Ord}, 1)$ such that $\langle M, \in^M, U \rangle$ is pointwise definable.
 - Enumerate elts of M as a_0, a_1, a_2, \ldots
 - Enumerate dense classes D_0, D_1, D_2, \ldots
 - Build U by meeting each D_n minimally, then coding a_n.

Theorem

Every countable model of ZFC has a pointwise definable class forcing extension.

Proof sketch

Start with countable model $\langle M, \in^M \rangle \models ZFC$.

- First step. (Simpson) Find M-generic $U \subseteq \text{Ord}^M$ via $\text{Add}(\text{Ord}, 1)$ such that $\langle M, \in^M, U \rangle$ is pointwise definable.
 - Enumerate elts of M as a_0, a_1, a_2, \ldots
 - Enumerate dense classes D_0, D_1, D_2, \ldots
 - Build U by meeting each D_n minimally, then coding a_n.

- Conclusion: in $M[G]$, every set is definable without parameters.
New: pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension.
New: pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension. Indeed, it has such an extension satisfying ZFC + V = L.
New: pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension. Indeed, it has such an extension satisfying $\text{ZFC} + V = L$.

Proof uses set-theoretic analogue of the universal algorithm.
New: pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension. Indeed, it has such an extension satisfying $ZFC + V = L$.

Proof uses set-theoretic analogue of the universal algorithm.

There is a definable finite sequence

$$a_0, a_1, \ldots, a_n$$

with the universal extension property for top-extensions.

If sequence is s in countable $M \models ZFC$, then for any desired t, there is a top-extension $N \models ZFC$ in which the sequence is t.
New: pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension. Indeed, it has such an extension satisfying $\text{ZFC} + V = L$.

Proof uses set-theoretic analogue of the universal algorithm.

There is a definable finite sequence

$$a_0, a_1, \ldots, a_n$$

with the universal extension property for top-extensions.

If sequence is s in countable $M \models \text{ZFC}$, then for any desired t, there is a top-extension $N \models \text{ZFC}$ in which the sequence is t.

Subtle, self-referential definition. “petulant child”
Pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension.
Pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of \mathbb{ZF} has a pointwise definable end extension.

Proof.

Build a tower of progressively elementary extensions

$$M_0 \subseteq M_1 \prec_{\Sigma_1} M_2 \prec_{\Sigma_2} M_3 \prec_{\Sigma_3} \cdots$$
Pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension.

Proof.

Build a tower of progressively elementary extensions

$$M_0 \subseteq M_1 \prec_{\Sigma_1} M_2 \prec_{\Sigma_2} M_3 \prec_{\Sigma_3} \cdots$$

Put a_0 last on the Σ_1-definable sequence.
Pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension.

Proof.

Build a tower of progressively elementary extensions

\[M_0 \subseteq M_1 \prec \Sigma_1 \ M_2 \prec \Sigma_2 \ M_3 \prec \Sigma_3 \cdots \]

Put a_0 last on the Σ_1-definable sequence.

Then a_1 last on Σ_2-sequence, and so on.
Pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of ZF has a pointwise definable end extension.

Proof.

Build a tower of progressively elementary extensions

$$
\ldots \subseteq M_3 \prec \Sigma_1 M_2 \prec \Sigma_2 M_3 \prec \Sigma_3 \ldots
$$

Put a_0 last on the Σ_1-definable sequence.

Then a_1 last on Σ_2-sequence, and so on.

Limit model N is a model of $\mathsf{ZFC} + V = L$.
Pointwise definable end-extensions

Theorem (Hamkins [Ham22])

Every countable model of $\mathcal{Z}F$ has a pointwise definable end extension.

Proof.

Build a tower of progressively elementary extensions

\[M_0 \subseteq M_1 \prec_{\Sigma_1} M_2 \prec_{\Sigma_2} M_3 \prec_{\Sigma_3} \cdots \]

Put a_0 last on the Σ_1-definable sequence.

Then a_1 last on Σ_2-sequence, and so on.

Limit model N is a model of $\mathcal{Z}FC + V = L$.

Can arrange that every element becomes definable. So N is pointwise definable.
Abundant pointwise definable models of set theory

So we have an abundance of pointwise definable models of set theory.
Abundant pointwise definable models of set theory

So we have an abundance of pointwise definable models of set theory.

These are models in which every real number, every function, every topological space, every set whatsoever, is definable without parameters.
Abundant pointwise definable models of set theory

So we have an abundance of pointwise definable models of set theory.

These are models in which every real number, every function, every topological space, every set whatsoever, is definable without parameters.

How do these models avoid the Math Tea argument?
Underlying the math tea argument is the presumption that we can associate every definition to the object it defines.

$$\psi_r \rightarrow r.$$
Underlying the math tea argument is the presumption that we can associate every definition to the object it defines.

\[\psi_r \rightarrow r. \]

It is by diagonalizing against this enumeration that one is supposed to conclude there are real numbers we cannot define.
Underlying the math tea argument is the presumption that we can associate every definition to the object it defines.

\[\psi_r \quad \mapsto \quad r. \]

It is by diagonalizing against this enumeration that one is supposed to conclude there are real numbers we cannot define.

But the fact is, we can’t always form this association in the first place.
The range of possibility

(i) There is no uniform definition of class of definable elements.

Specifically, there is no formula $df(x)$ in the language of set theory that is satisfied in any model $M \models \text{ZFC}$ exactly by the definable elements. To see this, consider $\forall x df(x)$ in a pointwise definable model and elementary extensions.
The range of possibility

(i) There is no uniform definition of class of definable elements.

Specifically, there is no formula $df(x)$ in the language of set theory that is satisfied in any model $M \models \text{ZFC}$ exactly by the definable elements. To see this, consider $\forall x df(x)$ in a pointwise definable model and elementary extensions.

(ii) In some models, the class of definable elements is nevertheless definable.

For example, in a pointwise definable model.
The range of possibility

(i) There is no uniform definition of class of definable elements.

Specifically, there is no formula $df(x)$ in the language of set theory that is satisfied in any model $M \models \text{ZFC}$ exactly by the definable elements. To see this, consider $\forall x df(x)$ in a pointwise definable model and elementary extensions.

(ii) In some models, the class of definable elements is nevertheless definable.

For example, in a pointwise definable model.

(iii) In others, the definable elements do not form a class.

Consider any nontrivial ultrapower of a pointwise definable model.
More possibilities

(iv) The definable elements may be a class, but not $\psi_r \mapsto r$.

This is true in a pointwise definable model.
More possibilities

(iv) The definable elements may be a class, but not $\psi_r \mapsto r$. This is true in a pointwise definable model.

(v) The definable elements can be a set, along with $\psi_r \mapsto r$. True in V if there is γ with $V_\gamma \prec V$.
More possibilities

(iv) The definable elements may be a class, but not $\psi_r \mapsto r$.

This is true in a pointwise definable model.

(v) The definable elements can be a set, along with $\psi_r \mapsto r$.

True in V if there is γ with $V_\gamma \prec V$.

(vi) No model has a **definable** definability map $\psi_r \mapsto r$.

Diagonalize against it.
More possibilities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(iv)</td>
<td>The definable elements may be a class, but not $\psi_r \mapsto r$.</td>
</tr>
<tr>
<td></td>
<td>This is true in a pointwise definable model.</td>
</tr>
<tr>
<td>(v)</td>
<td>The definable elements can be a set, along with $\psi_r \mapsto r$.</td>
</tr>
<tr>
<td></td>
<td>True in \mathcal{V} if there is γ with $\mathcal{V}_\gamma \prec \mathcal{V}$.</td>
</tr>
<tr>
<td>(vi)</td>
<td>No model has a definable definability map $\psi_r \mapsto r$.</td>
</tr>
<tr>
<td></td>
<td>Diagonalize against it.</td>
</tr>
<tr>
<td></td>
<td>The surviving content of the math-tea argument: in any model with $\psi_r \mapsto r$, the definable reals do not exhaust all the reals.</td>
</tr>
</tbody>
</table>
Side-stepping Russell

In a pointwise definable model of GBC, we have a definable one-to-one correspondence between sets and classes $a \mapsto X_a$.
Side-stepping Russell

In a pointwise definable model of GBC, we have a definable one-to-one correspondence between sets and classes $a \mapsto X_a$.

Russell objects by forming the class

$$R = \{ a \mid a \notin X_a \}$$

and observing $R \neq X_a$ for any a in light of $a \in R \iff a \notin X_a$.
Side-stepping Russell

In a pointwise definable model of GBC, we have a definable one-to-one correspondence between sets and classes \(a \mapsto X_a \).

Russell objects by forming the class

\[R = \{ a \mid a \notin X_a \} \]

and observing \(R \neq X_a \) for any \(a \) in light of \(a \in R \iff a \notin X_a \).

Our model side-steps this, because association \(a \mapsto X_a \) is 2nd-order definable, not first, and so in GBC we cannot form class \(R \).
Side-stepping Russell

In a pointwise definable model of GBC, we have a definable one-to-one correspondence between sets and classes $a \mapsto X_a$.

Russell objects by forming the class

$$R = \{ a \mid a \notin X_a \}$$

and observing $R \neq X_a$ for any a in light of $a \in R \iff a \notin X_a$.

Our model side-steps this, because association $a \mapsto X_a$ is 2nd-order definable, not first, and so in GBC we cannot form class R.

We don’t actually need pointwise definability here—it works in any GBC model in which every class is first-order definable.
Side-stepping Russell

In a pointwise definable model of GBC, we have a definable one-to-one correspondence between sets and classes \(a \mapsto X_a \).

Russell objects by forming the class

\[
R = \{ a \mid a \notin X_a \}
\]

and observing \(R \neq X_a \) for any \(a \) in light of \(a \in R \iff a \notin X_a \).

Our model side-steps this, because association \(a \mapsto X_a \) is 2nd-order definable, not first, and so in GBC we cannot form class \(R \).

We don’t actually need pointwise definability here—it works in any GBC model in which every class is first-order definable.

Reveals subtle definability aspect to Frege/Russell interaction.
Summary Conclusion

Returning to the math-tea argument...

- In seeking to define more and more reals, we are pushed to enlarge our context by considering larger structures or higher-order descriptions.
Summary Conclusion

Returning to the math-tea argument. . .

- In seeking to define more and more reals, we are pushed to enlarge our context by considering larger structures or higher-order descriptions.
- In any fixed such context, there will be only countably many definable objects.
Summary Conclusion

Returning to the math-tea argument...

- In seeking to define more and more reals, we are pushed to enlarge our context by considering larger structures or higher-order descriptions.
- In any fixed such context, there will be only countably many definable objects.
- The full context of definability-in-V is not actually expressible,
Summary Conclusion

Returning to the math-tea argument...

- In seeking to define more and more reals, we are pushed to enlarge our context by considering larger structures or higher-order descriptions.
- In any fixed such context, there will be only countably many definable objects.
- The full context of definability-in-V is not actually expressible,
- and for all we know, every object in the universe is uniquely describable. We just wouldn’t know it.
Summary Conclusion

Returning to the math-tea argument...

- In seeking to define more and more reals, we are pushed to enlarge our context by considering larger structures or higher-order descriptions.

- In any fixed such context, there will be only countably many definable objects.

- The full context of definability-in-V is not actually expressible,

- and for all we know, every object in the universe is uniquely describable. We just wouldn’t know it.

- But even if not, we might enlarge our universe to make this true.
Summary Conclusion

Returning to the math-tea argument...

- In seeking to define more and more reals, we are pushed to enlarge our context by considering larger structures or higher-order descriptions.
- In any fixed such context, there will be only countably many definable objects.
- The full context of definability-in-V is not actually expressible,
- and for all we know, every object in the universe is uniquely describable. We just wouldn’t know it.
- But even if not, we might enlarge our universe to make this true.

And so ultimately, Horatio is right, but possibly only in an extension of the universe...
Thank you.

Joel David Hamkins
University of Notre Dame

http://jdh.hamkins.org
References

