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Urelements

Atoms

V (A)

Sets of atoms
Sets of sets of atoms

Pure
sets

A

Set theory was traditionally conceived as a theory of abstract
collection over a class of already-existing primitive objects, the
urelements or atoms.
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Urelement set theory

Formalize as ⟨V (A),∈,A⟩.

The theory ZFCU

Extensionality
Foundation
Pairing, union, power set, infinity
collection + separation
axiom of choice

Extensionality, atoms vs. ∅

Replacement vs. collection + separation
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Urelement support

Support of u = atoms in hereditary construction of u.

V (B) = sets with support contained in B. A model of ZFCU.

Pure sets V = V (∅).

V (A) =
⋃

w⊆A V (w), where w ranges over sets.
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Rigidity and nonrigidity

In ZFC, the universe V is definably rigid. Transitive classes are
isomorphic iff identical.

Not true in ZFCU. Every bijection of atoms π : B → C lifts to an
isomorphism

π : V (B) ∼= V (C)

via
π : y 7→ {π(x) | x ∈ y }

Atoms are set-theoretically indistinguishable—the universe is
homogeneous with respect to atoms.
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Replacement is not enough

Abundance of automorphisms has consequences.

Collection does not follow from replacement

Let W = finitely supported sets.
Note that the urelements form a proper class in W , but
every set of urelements is finite.
Replacement will hold, since witnesses will be unique only
when same or smaller support.
Collection fails, since ∀n ∈ ω there is set of n atoms.

Ultimately similar to the situation of ZFC−. [GHJ16; Zar96]
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Failure of ω1-DC
Let W be the countably supported sets (assume uncountably
many urelements).

So W |= ZFCU, including collection.

Urelements form a proper class, yet every set of urelements is
countable.

This violates ω1-DC scheme, even though we have AC.

Main lesson

Axiomatization of urelement set theory can be finicky. Take
care, since natural approaches are not the same.
[Yao23; Yao22]
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Interpreting ZFCU in ZFC

Let me describe how to interpret various urelement set theories
in ZFC.
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Building interpretation V [[A ]]

Start in V |= ZFC, with class A.

Make a copy of A as A via a 7→ ā = ⟨0,a⟩.

Place A into V [[A ]], and close under:

If y ⊆ V [[A ]], place ȳ = ⟨1, y⟩ ∈ V [[A ]]. Define:

x ∈ ȳ ↔ x ∈ y

⟨V [[A ]],∈,A⟩ is a model of ZFCU.

Enumeration predicate A⃗(ǎ, ā) when a ∈ A.

⟨V [[A ]],∈, A⃗⟩ is a model of ZFCU⃗.
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If y ⊆ V [[A ]], place ȳ = ⟨1, y⟩ ∈ V [[A ]]. Define:
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Bi-interpretation

Theorem

ZF universe ⟨V ,∈⟩ is bi-interpretable, for any class A, with
⟨V [[A ]],∈, A⃗⟩, a model of ZFU⃗ + “A many urelements.”

Proof.

Can interpret V [[A ]] inside V .

Conversely, V is (isomorphic) to pure sets of V [[A ]].

Bi-interpretation, since each model can see how it is copied
into the other.

Need enumeration predicate A⃗ and not just A.
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Two perspectives

Can view the interpreted models from two perspectives.

View V [[A ]] as simulated in V
View V (A) as an extension of V

Similar to corresponding two views of ultrapowers j : V → M
and also forcing V ⊆ V [G].
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Bi-interpretable theories

Interpretations are uniform. So the following theories are all
bi-interpretable:

1 ZFC
2 ZFCU⃗ + “A many atoms”
3 ZFCU + “there are ω many atoms”

4 ZFCU + “there are R many atoms”
5 ZFCU⃗ + “there are Ord many atoms”
6 ZFCU⃗ + “there are V many atoms”

Bi-interpretation works in ZFCU with parameters, if A is a set.
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ZFCU is not tight

ZFC has a robust mutual interpretation phenomenon via forcing
and inner models, but there is no nontrivial bi-interpretation
phenomenon.

Theorem (Enayat)

ZFC is tight—any two bi-interpretable extensions of ZFC are
identical.

But ZFCU is not tight.

ZFCU has many bi-interpretable extensions with parameters.

ZFCU⃗ has many bi-interpretable extensions.
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Bi-interpretation fails for ZFCU
Theorem

Following theories are mutually interpretable, but not
bi-interpretable.

1 ZFC
2 ZFCU + “there are infinitely many atoms”
3 ZFCU + “there are a proper class of atoms”

Proof.

Provided already the mutual interpretations.

No model of third theory is bi-interpretable with a model of ZFC,
even with parameters, because automorphisms.
But semi-bi-interpretable.

Conclusion: its totally different to have A versus A⃗.
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Conclusion: its totally different to have A versus A⃗.
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Reflection in ZF

V

Vλ
λ

Lévy-Montague reflection theorem

For any φ(x), there is λ with φ absolute between Vλ and V .

Indeed, for every k there is a club of Σk -correct cardinals λ.
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Reflection with urelements
Can’t generally reflect to Vλ(A). Not generally a set, too many
atoms in A.

First-order reflection

Scheme. For every set p and φ there is a transitive set v
containing p such that φ is absolute between v and V (A).

Provable in ZFU+ set-many atoms.
Provable in ZFCU. Uses AC.
Actually, in ZFU+ every set is bijective with a pure set.
Actually, only: ∃u every set bijective with a set in V (u).
If V |= ZF then V [[A ]] has reflection.

Conceivable that very bad sets of urelements could spoil
reflection.
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Class theory with pure sets

Models have form ⟨M,∈M ,M⟩, where ⟨M,∈M⟩ is a model of
ZFC and M ⊆ P(M) is collection of classes X ⊆ M.

Class comprehension

{a | φ(a,X0, . . . ,Xn) } is a class in M.

Gödel-Bernays set theory allows first-order φ only.

Kelley-Morse allows second-order φ.

Both theories include global choice.

Even KM does not prove class-choice CC principle ([GH17]).
(but KM+CC mutually interpretable with KM)

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins
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Interpretation of Kelley-Morse in a first-order set theory

Theorem (Marek, Mostowski)

The following theories are bi-interpretable.
1 KM + CC

2 ZFC−+ largest cardinal, which is inaccessible

Proof.

“Unrolling” construction. Build the ZFC− model on top of the
ordinals, using well-founded class codes. Just like coding
hereditarily countable sets with reals.

Use CC to achieve collection axiom.

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins
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Urelement class theories

Natural urelement analogues of the class theories.

Models of form ⟨M,∈M ,A,M⟩.

GBCU has first-order class comprehension
KMU has second-order class comprehension

Both theories include a global well-order.

Warning: this is strictly stronger than global choice function.

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins
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Interpretations in class urelement theories
In any GBC model ⟨V ,∈,V⟩, with any class A ∈ V, can define
interpreted urelement model

⟨V [[A ]],∈, A⃗,V[[A ]]⟩

Classes are V[[A ]] = {B ∈ V | B ⊆ V [[A ]] }.

Theorem

Every model ⟨V ,∈,V⟩ of GBC is bi-interpretable, for every class
A ∈ V, with the interpreted model ⟨V [[A ]],∈, A⃗,V[[A ]]⟩, which is
a model of GBCU + “there are A many urelements.”

If the original model satisfies KM, then the interpreted model
satisfies KMU, and if the original model satisfies the class
choice principle CC, then so does the interpreted model.

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins
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Many atoms

The urelement class setting opens the door to the possibility of
having more than Ord many atoms. More than V many.

Bokai Yao was particularly motivated by the possibility of having
a huge class of atoms.
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Motivating case

Assume ZFCU in ⟨V (A),∈,A,V⟩, with Ord many atoms,
κ inaccessible.

V (A)V
Pure
sets

κ
Vκ Vκ(A)

Hκ(A)

Atoms A

Consider ⟨Hκ(A),∈,H⟩, where H = V ↾ Hκ(A).

A can be enormous relative to κ, but still a class in Hκ(A).
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Abundant atom axiom

Motivated by ⟨Hκ(A),∈,H⟩, where κ is inaccessible and A has
Ord many atoms in V .

Define class B is small, if size less than A.

Abundant atom axiom [HY23]

Expresses that the class of atoms is like an inaccessible
cardinal larger than Ord.

1 The class of urelements is strictly larger than Ord;
2 every small class of urelements admits a small power

class; and
3 every small-indexed class of small classes is small.

AAA is true in ⟨Hκ(A),∈,H⟩.

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins
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Bi-interpretation Theorem. The following theories are bi-interpretable

1 KMU + CC + the abundant atom axiom

2 KM + CC + ∃ inaccessible

3 KMU + CC + ∃ inaccessible +Ord many atoms

4 ZFC− + ∃κ < λ inaccessible, λ largest cardinal

5 ZFCU− + ∃κ < λ inaccessible, λ largest, λ atoms

W (A)
ZFCU−

λ atoms, κ, λ inacc

W
ZFC−

κ, λ inacc

V (A)

KMU + CC
κ inacc, Ord atoms

λ
V

KM + CC
κ inacc

V
KM
CC

V (A)

KMU + CC
Abundant atoms

κ

Abundant atoms A
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Second-order reflection

Second-order reflection principle

Every second-order φ(X ) true in ⟨V ,∈,V⟩ is true in some
Vλ |= φ(X ∩ Vλ).

Equivalent to say: true in some transitive set v , equipped with
all subsets.

But ZFC2 is finitely expressible, so equivalent to: every true
second-order φ(X ) in ⟨V ,∈,V⟩ reflects to some inaccessible
⟨Vκ,∈,Vκ+1⟩ |= φ(X ∩ Vκ).

Actually get a stationary proper class of κ. So Ord is Mahlo.

Get a stationary class of Π1
n-indescribable cardinals...

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins
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A curiosity

Reflection erases the difference between GBc and KM+CC.

Theorem

Assume GBc plus second-order reflection. Then KM holds,
including global choice, plus CC.

Proof.

If second-order comprehension failed, this would reflect to
some inaccessible Vκ, but KM holds there.

Similarly, if there were no global well-order, this would reflect to
Vκ, but by AC it holds there.
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Upper bound on second-order reflection

Theorem

If κ is a measurable cardinal, then ⟨Vκ,∈,Vκ+1⟩ is a model of
KM + CC plus the second-order reflection principle.

Proof.

Suppose φ(X ) true in ⟨Vκ,∈,Vκ+1⟩. Consider j : V → M with
critical point κ.

So φ(j(X )) holds in Mj(κ), reflects down to ⟨Vκ,∈,Vκ+1⟩ in
M.

ω-Erdős suffices.
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The surprise

Bokai Yao was interested in second-order reflection in context
with more than Ord urelements.

Theorem (Yao)

If κ is κ+-supercompact, then there is a model of KMU with
more than Ord many urelements in which second-order
reflection holds.

The supercompactness hypothesis was much stronger than
required for second-order reflection in atomless context.

Was supercompactness really required?

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins



Urelements Interpretations Reflection Class theory Abundant atoms Second-order reflection

The surprise

Bokai Yao was interested in second-order reflection in context
with more than Ord urelements.

Theorem (Yao)

If κ is κ+-supercompact, then there is a model of KMU with
more than Ord many urelements in which second-order
reflection holds.

The supercompactness hypothesis was much stronger than
required for second-order reflection in atomless context.

Was supercompactness really required?

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins



Urelements Interpretations Reflection Class theory Abundant atoms Second-order reflection

The surprise

Bokai Yao was interested in second-order reflection in context
with more than Ord urelements.

Theorem (Yao)

If κ is κ+-supercompact, then there is a model of KMU with
more than Ord many urelements in which second-order
reflection holds.

The supercompactness hypothesis was much stronger than
required for second-order reflection in atomless context.

Was supercompactness really required?

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins



Urelements Interpretations Reflection Class theory Abundant atoms Second-order reflection

The surprise

Bokai Yao was interested in second-order reflection in context
with more than Ord urelements.

Theorem (Yao)

If κ is κ+-supercompact, then there is a model of KMU with
more than Ord many urelements in which second-order
reflection holds.

The supercompactness hypothesis was much stronger than
required for second-order reflection in atomless context.

Was supercompactness really required?

The surprising strength of second-order reflection in set theory with abundant urelements Joel David Hamkins



Urelements Interpretations Reflection Class theory Abundant atoms Second-order reflection

Second-order reflective cardinals

Definition ([HY23])

1 κ is second-order reflective, if every second-order φ true in
some structure M language size < κ with κ ⊆ M is true in
some m ≺ M size < κ with m ∩ κ ∈ κ.

2 κ is second-order λ-reflective, if this holds for |M| ≤ λ.

3 κ is reflective or λ-reflective for Π1
n assertions, if such

reflection occurs for φ in Π1
n.

Natural affinity with Magidor’s characterization [Mag71] of least
supercompact. Nearly the same, except for m ∩ κ ∈ κ.
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Shades of supercompactness
Theorem

If κ is λ-supercompact, then κ is second-order λ-reflective.

Proof.

Consider any M = ⟨λ,R, · · · ⟩ |= φ, and let j : V → N be a
λ-supercompact embedding. Note j(M) = ⟨j(λ), j(R), · · · ⟩ reflects to
j " M = ⟨j " λ, j(R), · · · ⟩, which is isomorphic to M.

Theorem

If κ is 2λ<κ

-reflective for Π1
1 assertions, then κ is λ-supercompact.

Proof.

Let M = ⟨H(λ<κ)+ ,∈, κ, λ⟩. Nonexistence of normal fine measure on
Pκλ is second-order Π1

1-expressible. But over set m ≺ M can build
normal, fine m-measure using seed s = m ∩ λ.
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Characterization of supercompact
Corollary ([HY23])

The following are equivalent:
1 κ is second-order reflective.
2 κ is Π1

1-reflective.
3 κ is a supercompact cardinal.

Theorem ([HY23]). Level-by-level version

Assume λ = λ<κ. Then the following are equivalent:
1 κ is λ-reflective for Π1

1 assertions
2 κ is nearly λ-supercompact

Constellation of closely related results: [Car85, theorems 3.5,
4.7 ], [Cod20, theorem 1.4], [HM22, lemma 2.8].
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Second-order reflection with urelements

Consider second-order reflection in the urelement context.

Theorem

If κ is λ-supercompact, λ > κ, then in V [[λ ]] the model
⟨Hκ(A),∈,H⟩ is a model of KMU + CC plus second-order
reflection with more than Ord many urelements, indeed, λ many.

Proof.

Hκ(A) has size λ, so this flows from κ being λ-reflective.

This generalizes and explains Yao’s original construction.
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Improved result

Weaken λ-supercompactness to nearly λ-supercompact.

Theorem

If κ is nearly λ-supercompact, then in V [[λ ]] the model
⟨Hκ(A),∈,H⟩ satisfies KMU + CC plus Π1

1-reflection with more
than Ord many urelements, indeed, λ many.

Our main theorem, next, shows that full supercompactness is
required when there are abundant urelements.
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Main Theorem (Hamkins-Yao [HY23]). Following theories are bi-interpretable.

0 GBUc + abundant atom axiom + second-order reflection

1 KMU + CC + abundant atom axiom + second-order reflection

2 KM + CC + κ supercompact, Ord -reflective

3 KMU + CC + Ord atoms + κ supercompact, Ord -reflective

4 ZFC− + κ is <λ-supercompact, λ-reflective, λ largest, inaccessible

5 ZFCU− + λ atoms + κ is <λ-sc, λ-reflective, λ largest, inaccessible

W (A)
ZFCU−

λ inaccessible, λ atoms
κ nearly λ-supercompact

W
ZFC−

λ inacc
κ nearly λ-superc

V (A)

KMU + CC
κ supercompact

Ord atoms
second-order reflection

λ
V

KM + CC
κ supercomp

reflection

V
KM
CC

V (A)

KMU + CC
abundant atoms

second-order reflection

κ

abundant atoms A
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A few philosophical conclusions
Historically, urelements disappeared from set theory.

The intended atoms (numbers, geometric points) were
simulable in pure set theory
Interpretations show robustly how atoms not needed—
bi-interpretable theories have same semantic content
On grounds of structuralism, can restrict to pure sets
But, this argument does not apply if there would be very
weird sets of urelements
My question: what would be the mathematical structures
that can only be represented with such sets?

Main lesson of the main theorem.

If you want more than Ord many urelements with classes,
you didn’t grow the universe tall enough
But again, not if one wants to allow weird sets of atoms
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Thank you.
Slides and articles available on http://jdh.hamkins.org.

Joel David Hamkins
University of Notre Dame
Oxford University
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