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This is joint work in progress with myself, Nai Chung Hou,
Andreas Lietz, and Farmer Schlutzenberg.

A MathOverflow collaboration

The topic originated in Hou’s question [Hou23] on
MathOverflow and our various answers to it [Ham23; Sch23;
Lie23], in which the solution emerged gradually, ultimately
converging to the current collaboration [Ham+].

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

The covering reflection principle

We consider a model-theoretic covering reflection principle.

Main idea

Every large structure is covered by elementary images of a
suitable fixed small structure.

“Looks like model theory. . .

. . . but it has a set-theoretic core.”
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The covering reflection principle

Covering reflection principle CRPδ

Holds for a cardinal δ, if for every first-order structure B in a
countable language, there is substructure A, size less than δ,
such that B is covered by the elementary images of A in B.

B
B
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j

That is, every element b ∈ B is in the range of some
elementary embedding j : A→ B.
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Instances of covering reflection

Model theory is full of instances of covering reflection.

Every uncountable dense linear order, for example, is
covered by elementary images of a fixed countable dense
linear order.
Similarly, every model of an ℵ0-categorical theory is
covered by elementary images of the unique countable
model.
In fact, same is true for κ-categorical theories in
uncountable powers κ—they are covered by elementary
images of a fixed countable structure.
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Models of κ-categorical theories

Theorem

If a countable theory T is κ-categorical for some infinite κ, then
T has covering reflection with respect to countable models.

Furthermore, it is strongly uniform—there is a countable A |= T
covering every uncountable B |= T by its elementary images.

Proof.

ℵ0-categorical is easy case—cover by countable elementary
substructures.

κ-categorical for uncountable κ. By Morley, all uncountable
B |= T are saturated. Morley also proved T is ℵ0-stable, so
there is a countable saturated model. It covers.
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Covering reflection cardinal δ

But covering reflection is about covering all models, not just
models of a particular theory.

Covering reflection CRPδ

Every model B in a countable language is covered by
elementary images of a fixed model A of size less than δ.

Question

Is there any such δ? Does covering reflection occur? How large
is the smallest cardinal exhibiting covering reflection? Is the
covering reflection principle consistent? What is the
consistency strength?
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Easy observations

Covering reflection CRPδ

Every model B is covered by elementary images of some
model A size < δ.

Closed upward

If covering reflection holds for δ, then also for any larger δ′ > δ.

So our focus might be placed on the smallest δ for which
covering reflection holds.
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Must be uncountable

Observation

Covering reflection fails for δ = ℵ0, since the small model A
would have to be finite, but no infinite model B has finite
elementary substructures.

So δ must be uncountable. ω1 ≤ δ.

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Must be uncountable

Observation

Covering reflection fails for δ = ℵ0, since the small model A
would have to be finite, but no infinite model B has finite
elementary substructures.

So δ must be uncountable. ω1 ≤ δ.

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Bigger than continuum

Observation

If covering reflection holds for δ, then δ is strictly above the
continuum c.

To see this, consider ordered real field ⟨R,+, ·,0,1, <⟩.

Elementary subfield A ≺ R is determined by the cuts in Q it fills.

It has no other elementary images. So R is not covered by any
proper subfield.

Thus, c < δ.

How big must δ be? Is there any δ at all with covering
reflection?

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Bigger than continuum

Observation

If covering reflection holds for δ, then δ is strictly above the
continuum c.

To see this, consider ordered real field ⟨R,+, ·,0,1, <⟩.

Elementary subfield A ≺ R is determined by the cuts in Q it fills.

It has no other elementary images. So R is not covered by any
proper subfield.

Thus, c < δ.

How big must δ be? Is there any δ at all with covering
reflection?

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Bigger than continuum

Observation

If covering reflection holds for δ, then δ is strictly above the
continuum c.

To see this, consider ordered real field ⟨R,+, ·,0,1, <⟩.

Elementary subfield A ≺ R is determined by the cuts in Q it fills.

It has no other elementary images. So R is not covered by any
proper subfield.

Thus, c < δ.

How big must δ be? Is there any δ at all with covering
reflection?

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Bigger than continuum

Observation

If covering reflection holds for δ, then δ is strictly above the
continuum c.

To see this, consider ordered real field ⟨R,+, ·,0,1, <⟩.

Elementary subfield A ≺ R is determined by the cuts in Q it fills.

It has no other elementary images. So R is not covered by any
proper subfield.

Thus, c < δ.

How big must δ be? Is there any δ at all with covering
reflection?

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Bigger than continuum

Observation

If covering reflection holds for δ, then δ is strictly above the
continuum c.

To see this, consider ordered real field ⟨R,+, ·,0,1, <⟩.

Elementary subfield A ≺ R is determined by the cuts in Q it fills.

It has no other elementary images. So R is not covered by any
proper subfield.

Thus, c < δ.

How big must δ be? Is there any δ at all with covering
reflection?

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Bigger than continuum

Observation

If covering reflection holds for δ, then δ is strictly above the
continuum c.

To see this, consider ordered real field ⟨R,+, ·,0,1, <⟩.

Elementary subfield A ≺ R is determined by the cuts in Q it fills.

It has no other elementary images. So R is not covered by any
proper subfield.

Thus, c < δ.

How big must δ be? Is there any δ at all with covering
reflection?

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Natural variations are equivalent
Several natural variations of covering reflection are equivalent.

Proposition

Covering reflection is equivalently formulated for finite
languages only.

Proof.

Given B of size at least δ in a countable language, expand with
pairing function, constant 0, successor S to create distinct
definable elements S0,SS0, . . .. We can use these as indices
with pairing function to pick out slices of a universal relation.
This interprets the countable signature in a finite language.
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Natural variations equivalent

Proposition

Covering reflection is equivalently formulated with mere
embeddings instead of elementary embeddings.

Proof.

We can simply Skolemize the language, so that submodels in
the expanded language are elementary in the original
language.
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Larger languages
Theorem

Covering reflection for δ is equivalently formulated for
languages of size continuum.

Proof.

Assume CRPδ for countable languages. Consider B in language of
size continuum. Relations Rx for each x ∈ R.

Let B+ = B ⊔ ⟨R < +, ·,0,1, <⟩, with pairing function on B and
relation R(x , y⃗) coding Rx(y⃗). Finite language.

By CRPδ, there is A+ size < δ covering B+. By elementarity,
A+ = A ⊔ ⟨R,+, ·,0,1, <⟩. Must have all real x ∈ R.

But then it can refer to R(x , y⃗) and thus Rx(y⃗) on the B part. So the
elementary images of A cover B.
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Larger languages

One can iterate this much further.

Key idea

Cardinal κ is uncoverable if there is a structure C of size κ in a
countable language that is not covered by elementary images
of any proper substructure.

This is like ⟨R,+, ·,0,1, <⟩, so c is uncoverable.

If κ is uncoverable, so is 2κ. Augment κ with 2κ.
λ singular limit of uncoverable cardinals→ λ uncoverable.

This gets us up to the first inaccessible, so we can handle
languages of increasingly large size.

The covering reflection principle Joel David Hamkins
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Uncoverable −→ larger languages

The observation is that if κ is uncoverable via structure C, then
we can consider B ⊔ C.

Every covering structure A of C will have to include all of C.

So we can use elements of C as indices x in a universal
relation R(x , . . .) to handle languages of size C.

So with CRPδ we can equivalently handle languages size 2c,
22c

, up to first inaccessible, perhaps more.
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Covering small sets
Theorem

The covering reflection principle for δ is equivalently formulated
by requiring not just points in B to covered, but every set X ⊆ B
of size at most continuum should be covered by some
j : A→ B, that is, X ⊆ ran(j).

Proof.

Given B, let B+ = B ⊔ R ⊔ BR, equipped with the projection
functions (x , ⟨bx | x ∈ R⟩) 7→ bx .

If A+ covers B+, then R is part of A+, and so for any X ⊆ B size
R we can hit the set X in BR via j : A→ B, which puts
X ⊆ ran(j).

Can ramp this up to any uncoverable cardinal.
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A natural strengthening of covering reflection

These ideas suggest a natural strengthening.

Definition

CRP(δ, λ, θ) asserts the covering reflection principle for models
B in language of size less than λ, covered by a model A of size
less than δ, covering sets X ⊆ B of size less than θ.

So CRPδ = CRP(δ, ω1,2), but this implies CRP(δ, γ, γ) up to
first inaccessible γ, and possibly much more.

We are unsure of the exact interplay, but perhaps we can climb
to CRP(δ, δ, δ) if δ is least with CRPδ?
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Bounded size
Theorem

Covering reflection for δ is equivalently formulated only for
structures B of size at most 2<δ.

Proof.

Consider any model B in a countable language L.

Let S be all L-structures A with domain bounded in δ. Note S has
size at most 2<δ.

S has copy of every L-structure of size less than δ.

If covering reflection fails for B, each A ∈ S fails to cover some
xA ∈ B. Find B̄ ≺ B containing every xA, size at most 2<δ. So B̄ also
fails covering reflection.

Note that 2<δ = δ is quite common, including every infinite cardinal
under GCH.
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Covering reflection is Π1
1

Corollary

The covering reflection principle for a regular cardinal δ is
Π1

1-expressible in ⟨Vδ,∈⟩.

Proof.

One can refer to all structures B of size at most 2<δ with a
second-order quantifier over Vδ, since <δ2 ⊆ Vδ.

To assert that a given B is covered by embedding images of a
given small structure A is first-order expressible in Vδ.

So the covering reflection principle has complexity Π1
1 over

Vδ.
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A hint: not very large?

Corollary

The least δ for which covering reflection holds is not weakly
compact.

Proof.

Weakly compact cardinals are Π1
1-indescribable, and so if they

exhibit covering reflection, then there must be a smaller
cardinal also exhibiting covering reflection. So the least cardinal
δ with covering reflection cannot be weakly compact.
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Another upper bound on size
Corollary

The first δ with covering reflection is less than the first
Σ2-correct cardinal. In particular, it is less than the first strong
cardinal.

Proof.

Since Π1
1 assertions over Vδ are Π1 in the language of set

theory, the existence of a cardinal δ with the covering reflection
principle is a Σ2 assertion. So if there is one, there will be one
below the first Σ2-correct cardinal. In particular, since every
strong cardinal is Σ2-correct, the first cardinal δ with covering
reflection will be less than the first strong cardinal.

But. . . this is also true of rank-to-rank cardinals, huge cardinals,
and more.
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A natural weakening

A natural weakening of the covering reflection principle.

Definition

The covering subreflection principle (CSRPδ) holds for δ if for
every structure B in a countable language there is a structure A
of size less than δ, such that B is covered by the elementary
images of the elementary submodels of A.

That is, for every b ∈ B there is Ā ≺ A and elementary
embedding j : Ā→ B with b ∈ ran(j).
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Covering subreflection is settled
Theorem

Covering subreflection holds for δ if and only if δ > 2ℵ0 .

Proof.

(→) The real field ⟨R,+, ·, <⟩ cannot be covered by substructures of a
structure of size less than continuum.

(←) Consider δ > 2ℵ0 and B in countable language L.

For each b ∈ B, pick countable Bb ≺ B with b ∈ Bb.

Choose family {Bb | b ∈ I } realizing every isomorphism type arising,
with I size at most continuum.

Let A ≺ B have Bb ⊆ A for all b ∈ I, size at most continuum.

The elementary substructures Bb ≺ A for b ∈ I cover B, as desired.
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Remarkable strength of covering reflection

Despite the earlier hints of weakness, I would like now to
establish the remarkable large-cardinal strength of the covering
reflection principle.

We shall gradually reveal increasingly strong large cardinal
lower bounds to the strength of covering reflection.
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Extracting strength
Suppose that covering reflection holds with cardinal δ.

Consider the set-theoretic structure B = ⟨Vδ+1,∈⟩.

By covering reflection, there is a small structure A whose
elementary images in B cover B.

So A must look like a small version of Vδ+1.

Note that A must be well founded. Without loss, A is transitive.

Since B = Vδ+1 has a largest ordinal δ, it follows that A also
has a largest ordinal δ0, with j(δ0) = δ. Perhaps A is something
like Vδ0+1.

It follows that j must have a critical point, cp(j) = κ < j(κ).
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Extracting strength

We have assumed B = Vδ+1 is covered by elementary images
j : A→ B of the transitive set A.

Let κ = cp(j) be smallest possible critical point arising
j : A→ B.

Every X ⊆ κ is in B, and so there is some x ∈ A and j : A→ B
with j(x) = X .

Since x and j(x) = X must agree up to κ, this implies X ∈ A.

So P(κ) ⊆ A.
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Extracting strength—one measurable.

So we have j : A→ B = Vδ+1 with κ = cp(j) and P(κ) ⊆ A.

This implies that κ is a measurable cardinal, since we can
define the induced normal measure X ∈ µ↔ κ ∈ j(X ) for a
fixed j : A→ B with critical point κ.

Conclusion

If covering reflection holds for δ, then there is a measurable
cardinal κ < δ.

Perhaps the earlier result that δ itself is not weakly compact
was a distraction.
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Extracting strength—more than a measurable
Let’s go for more.

Take κ0 = κ, using the κ just defined.

Let κ1 be the smallest critical point of some j : A→ B with
κ0 ∈ ran(j).

Since κ0 was smallest possible critical point, we have κ0 ≤ κ1,
but since κ1 is not in the range of j , it must be that κ0 < κ1.

Furthermore, we get P(κ1) ⊆ A just as we did with κ0.

Namely, if X ⊆ κ1, there is j : A→ B with {κ0,X } ∈ ran(j). So
both κ0 and X are in the range of j . So the critical point of j is at
least κ1, and if X = j(x), then x and j(x) = X agree up to κ1,
which implies X ∈ A.

So P(κ1) ⊆ A.
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Extracting strength—two measurable cardinals

So we have j : A→ Vδ+1 with critical point κ1 and P(κ1) ⊆ A.

This implies κ1 also is a measurable cardinal, with induced
normal measure

X ∈ µ↔ κ1 ∈ j(X )

Conclusion

If covering reflection holds for δ, then there are two measurable
cardinals below δ.
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Extendible cardinals
A cardinal κ is 1-extendible, if there is an elementary
embedding j : Vκ+1 → Vj(κ)+1 with critical point κ.

Every 1-extendible cardinal is a limit of measurable cardinals, of
very high Mitchell rank.

Thus, we have found many measurable cardinals below δ of
high Mitchell rank.

More generally, a cardinal κ is η-extendible, if there is an
elementary embedding j : Vκ+η → Vθ with critical point κ.

The cardinal κ is extendible, if η-extendible for all η.

Stronger than supercompact, in the upper realms of the large
cardinal hierarchy.

The covering reflection principle Joel David Hamkins
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Pushing harder—supercompactness
Reasoning with κ1 as above shows that Vκ1+1 ⊆ A.

Therefore the restriction j ↾ Vκ1+1 → Vj(κ1)+1 shows that κ0 is
(κ1 + 1)-extendible.

So κ0 is extendible up to a measurable cardinal, which is a
considerable large cardinal hypothesis.

This implies, for example, that κ0 is a supercompact cardinal in
Vκ1 .

Conclusion

The consistency strength of covering reflection exceeds a
supercompact cardinal.

The covering reflection principle Joel David Hamkins
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Pushing still harder—
Let us push still harder.

We defined κ0 and κ1, but let us continue the iteration longer.

For each β < δ, let κβ be smallest critical point of some
j : A→ B with ⟨κα | α < β⟩ in ran(j).

The same kind of reasoning as before shows P(κβ) ⊆ A and
consequently Vκβ+1 ⊆ A and κβ is measurable.

If β ≤ κβ, which is true already for a long way, then all initial
segments of ⟨κα | α < β⟩ are also in the range of the j : A→ B
witnessing κβ. So this embedding is also relevant when
defining previous κα, and consequently κα ≤ κβ for all α < β.

But since those κα are in ran(j), but κβ is not, it follows that
κα < κβ for all α < β.

The covering reflection principle Joel David Hamkins
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Pushing still harder
In short, the κα sequence is strictly increasing for quite a long
way, as long as β ≤ κβ remains true.

But it cannot go up forever, since these are all in A.

So it must eventually happen that κγ < γ for some γ.

Let λ = κγ when this occurs. So λ is critical point of some
j : A→ B with ⟨κα | α < γ⟩ in ran(j).

This j is relevant for α < λ, so κα < λ. Thus, λ = supα<λ κα.

Each κα is λ-extendible by the reasoning we gave earlier.

Conclusion

If covering reflection holds at δ, then there is measurable λ < δ
that is a limit of λ-extendible cardinals.

The covering reflection principle Joel David Hamkins
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A little more

In fact, in the paper we prove that unboundedly many of the κα
for α < λ are extendible inside Vλ.

Conclusion

If covering reflection holds at δ, then there is measurable
cardinal λ below δ such that Vλ has a proper class of extendible
cardinals.

The covering reflection principle Joel David Hamkins
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Still more
Can still get more.

There are additional measurable cardinals above λ, including
κβ for λ ≤ β < γ.

So by similar reasoning we get another λ̄ higher up that is a
limit of λ̄-extendible cardinals.

Vλ̄ will have a proper class of extendible cardinals, with λ as an
extendible limit of extendible cardinals inside it.

Conclusion

If covering reflection holds for δ, then it is consistent to have a
proper class of extendible cardinals and extendible limits of
extendible cardinals, and limits of limits, and so forth.

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Still more
Can still get more.

There are additional measurable cardinals above λ, including
κβ for λ ≤ β < γ.

So by similar reasoning we get another λ̄ higher up that is a
limit of λ̄-extendible cardinals.

Vλ̄ will have a proper class of extendible cardinals, with λ as an
extendible limit of extendible cardinals inside it.

Conclusion

If covering reflection holds for δ, then it is consistent to have a
proper class of extendible cardinals and extendible limits of
extendible cardinals, and limits of limits, and so forth.

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Still more
Can still get more.

There are additional measurable cardinals above λ, including
κβ for λ ≤ β < γ.

So by similar reasoning we get another λ̄ higher up that is a
limit of λ̄-extendible cardinals.

Vλ̄ will have a proper class of extendible cardinals, with λ as an
extendible limit of extendible cardinals inside it.

Conclusion

If covering reflection holds for δ, then it is consistent to have a
proper class of extendible cardinals and extendible limits of
extendible cardinals, and limits of limits, and so forth.

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Still more
Can still get more.

There are additional measurable cardinals above λ, including
κβ for λ ≤ β < γ.

So by similar reasoning we get another λ̄ higher up that is a
limit of λ̄-extendible cardinals.

Vλ̄ will have a proper class of extendible cardinals, with λ as an
extendible limit of extendible cardinals inside it.

Conclusion

If covering reflection holds for δ, then it is consistent to have a
proper class of extendible cardinals and extendible limits of
extendible cardinals, and limits of limits, and so forth.

The covering reflection principle Joel David Hamkins



Covering reflection Elementary observations Covering reflection is strong Upper bounds

Upper bound?

OK, so covering reflection is strong, if it is consistent.

But is it consistent?

So far in this talk I have not established consistency from any
hypothesis.

Let me do so now.

The covering reflection principle Joel David Hamkins
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Huge cardinals

A cardinal κ is huge, if it is critical point of elementary
j : V → M with j(κ)M ⊆ M.

This is a large cardinal in the upper realm of large cardinals,
above supercompact, extendible, and so forth, but below
rank-to-rank.

Theorem

If κ is huge, then the covering reflection principle holds of κ.
The least cardinal δ exhibiting covering reflection is therefore
strictly less than κ.

The covering reflection principle Joel David Hamkins
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strictly less than κ.
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Proof of hugeness upper bound

Assume that κ is huge, witnessed by j : V → M.

Suppose covering reflection fails at κ, with structure B of size κ.

So M thinks j(B) is a counterexample to covering reflection for
j(κ).

By hugeness, M and V have same substructures of j(B) of size
< j(κ), and same embeddings into j(B).

So j(B) is also a counterexample to covering reflection for j(κ)
in V .
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Proof of hugeness upper bound, continued
In particular, in V we think that j(B) is not covered by
elementary images of the specific structure B.

So there is x ∈ j(B) such that
x is not in the range of any elementary embedding of
B into j(B).

Applying j , we conclude in M that
j(x) is not in the range of any elementary embedding
of j(B) into j(j(B))

Now, a delightful trick. j ↾ j(B) is a perfectly good elementary
embedding of j(B) into j(j(B)).

And it hits j(x). Contradiction.
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Bounds on the strength

So we have trapped the consistency strength of the covering
reflection principle between lower and upper bounds.

Lower bound. Proper class of extendible cardinals.
Extendible limits of extendible cardinals, limits of limits, and
so forth.
Upper bound. Strictly below a huge cardinal.

These notions are not so far apart.
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Towards the exact consistency strength

Consider the (new) large cardinal notion.

A cardinal κ is an anchor cardinal if for every X ⊆ Vκ there is
κ0 < κ1 < κ and elementary embedding
j : ⟨Vκ1 ,∈,X ∩ Vκ1⟩ → ⟨Vκ,∈,X ⟩ with κ0 = cp(j) and j(κ0) = κ1.

Related to links and chains in [SRK78].

Every huge cardinal has a normal measure concentrating on
anchor cardinals.
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Exact consistency strength

Ultimately we are able to settle the exact consistency strength
with the following theorem:

Theorem

The least cardinal δ with covering reflection is exactly the least
anchor cardinal.

Please read the paper for further details.
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Thank you.
Slides and articles available on http://jdh.hamkins.org.

Joel David Hamkins
O’Hara Professor of Logic
University of Notre Dame

VRF, Mathematical Intitute
University of Oxford
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