A model of the generic Vopěnka principle in which the ordinals are not $\Delta_2$-Mahlo

  • V. Gitman and J. D. Hamkins, “A model of the generic Vop\v enka principle in which the ordinals are not $\Delta_2$-Mahlo.” (manuscript under review)  
    @ARTICLE{GitmanHamkins:A-model-of-the-generic-Vopenka-principle-in-which-the-ordinals-are-not-delta_2-Mahlo,
    author = {Victoria Gitman and Joel David Hamkins},
    title = {A model of the generic Vop\v enka principle in which the ordinals are not $\Delta_2$-Mahlo},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    abstract = {},
    keywords = {},
    source = {},
    doi = {},
    eprint = {1706.00843},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/generic-vopenka-ord-not-mahlo},
    }

Abstract. The generic Vopěnka principle, we prove, is relatively consistent with the ordinals being non-Mahlo. Similarly, the generic Vopěnka scheme is relatively consistent with the ordinals being definably non-Mahlo. Indeed, the generic Vopěnka scheme is relatively consistent with the existence of a $\Delta_2$-definable class containing no regular cardinals. In such a model, there can be no $\Sigma_2$-reflecting cardinals and hence also no remarkable cardinals. This latter fact answers negatively a question of Bagaria, Gitman and Schindler.

 

The Vopěnka principle is the assertion that for every proper class of first-order structures in a fixed language, one of the structures embeds elementarily into another. This principle can be formalized as a single second-order statement in Gödel-Bernays set-theory GBC, and it has a variety of useful equivalent characterizations. For example, the Vopěnka principle holds precisely when for every class $A$, the universe has an $A$-extendible cardinal, and it is also equivalent to the assertion that for every class $A$, there is a stationary proper class of $A$-extendible cardinals (see theorem 6 in my paper The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme) In particular, the Vopěnka principle implies that ORD is Mahlo: every class club contains a regular cardinal and indeed, an extendible cardinal and more.

To define these terms, recall that a cardinal $\kappa$ is extendible, if for every $\lambda>\kappa$, there is an ordinal $\theta$ and an elementary embedding $j:V_\lambda\to V_\theta$ with critical point $\kappa$. It turns out that, in light of the Kunen inconsistency, this weak form of extendibility is equivalent to a stronger form, where one insists also that $\lambda<j(\kappa)$; but there is a subtle issue about this that comes up with the virtual forms of these axioms, where the virtual weak and virtual strong forms are no longer equivalent. Relativizing to a class parameter, a cardinal $\kappa$ is $A$-extendible for a class $A$, if for every $\lambda>\kappa$, there is an elementary embedding
$$j:\langle V_\lambda, \in, A\cap V_\lambda\rangle\to \langle V_\theta,\in,A\cap V_\theta\rangle$$
with critical point $\kappa$, and again one may equivalently insist also that $\lambda<j(\kappa)$. Every such $A$-extendible cardinal is therefore extendible and hence inaccessible, measurable, supercompact and more. These are amongst the largest large cardinals.

In the first-order ZFC context, set theorists commonly consider a first-order version of the Vopěnka principle, which we call the Vopěnka scheme, the scheme making the Vopěnka assertion of each definable class separately, allowing parameters. That is, the Vopěnka scheme asserts, of every formula $\varphi$, that for any parameter $p$, if $\{\,x\mid \varphi(x,p)\,\}$ is a proper class of first-order structures in a common language, then one of those structures elementarily embeds into another.

The Vopěnka scheme is naturally stratified by the assertions $\text{VP}(\Sigma_n)$, for the particular natural numbers $n$ in the meta-theory, where $\text{VP}(\Sigma_n)$ makes the Vopěnka assertion for all $\Sigma_n$-definable classes. Using the definable $\Sigma_n$-truth predicate, each assertion $\text{VP}(\Sigma_n)$ can be expressed as a single first-order statement in the language of set theory.

In my previous paper, The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme, I proved that the Vopěnka principle is not provably equivalent to the Vopěnka scheme, if consistent, although they are equiconsistent over GBC and furthermore, the Vopěnka principle is conservative over the Vopěnka scheme for first-order assertions. That is, over GBC the two versions of the Vopěnka principle have exactly the same consequences in the first-order language of set theory.

In this article, Gitman and I are concerned with the virtual forms of the Vopěnka principles. The main idea of virtualization, due to Schindler, is to weaken elementary-embedding existence assertions to the assertion that such embeddings can be found in a forcing extension of the universe. Gitman and Schindler had emphasized that the remarkable cardinals, for example, instantiate the virtualized form of supercompactness via the Magidor characterization of supercompactness. This virtualization program has now been undertaken with various large cardinals, leading to fruitful new insights.

Carrying out the virtualization idea with the Vopěnka principles, we define the generic Vopěnka principle to be the second-order assertion in GBC that for every proper class of first-order structures in a common language, one of the structures admits, in some forcing extension of the universe, an elementary embedding into another. That is, the structures themselves are in the class in the ground model, but you may have to go to the forcing extension in order to find the elementary embedding.

Similarly, the generic Vopěnka scheme, introduced by Bagaria, Gitman and Schindler, is the assertion (in ZFC or GBC) that for every first-order definable proper class of first-order structures in a common language, one of the structures admits, in some forcing extension, an elementary embedding into another.

On the basis of their work, Bagaria, Gitman and Schindler had asked the following question:

Question. If the generic Vopěnka scheme holds, then must there be a proper class of remarkable cardinals?

There seemed good reason to expect an affirmative answer, even assuming only $\text{gVP}(\Sigma_2)$, based on strong analogies with the non-generic case. Specifically, in the non-generic context Bagaria had proved that $\text{VP}(\Sigma_2)$ was equivalent to the existence of a proper class of supercompact cardinals, while in the virtual context, Bagaria, Gitman and Schindler proved that the generic form $\text{gVP}(\Sigma_2)$ was equiconsistent with a proper class of remarkable cardinals, the virtual form of supercompactness. Similarly, higher up, in the non-generic context Bagaria had proved that $\text{VP}(\Sigma_{n+2})$ is equivalent to the existence of a proper class of $C^{(n)}$-extendible cardinals, while in the virtual context, Bagaria, Gitman and Schindler proved that the generic form $\text{gVP}(\Sigma_{n+2})$ is equiconsistent with a proper class of virtually $C^{(n)}$-extendible cardinals.

But further, they achieved direct implications, with an interesting bifurcation feature that specifically suggested an affirmative answer to the question above. Namely, what they showed at the $\Sigma_2$-level is that if there is a proper class of remarkable cardinals, then $\text{gVP}(\Sigma_2)$ holds, and conversely if $\text{gVP}(\Sigma_2)$ holds, then there is either a proper class of remarkable cardinals or a proper class of virtually rank-into-rank cardinals. And similarly, higher up, if there is a proper class of virtually $C^{(n)}$-extendible cardinals, then $\text{gVP}(\Sigma_{n+2})$ holds, and conversely, if $\text{gVP}(\Sigma_{n+2})$ holds, then either there is a proper class of virtually $C^{(n)}$-extendible cardinals or there is a proper class of virtually rank-into-rank cardinals. So in each case, the converse direction achieves a disjunction with the target cardinal and the virtually rank-into-rank cardinals. But since the consistency strength of the virtually rank-into-rank cardinals is strictly stronger than the generic Vopěnka principle itself, one can conclude on consistency-strength grounds that it isn’t always relevant, and for this reason, it seemed natural to inquire whether this second possibility in the bifurcation could simply be removed. That is, it seemed natural to expect an affirmative answer to the question, even assuming only $\text{gVP}(\Sigma_2)$, since such an answer would resolve the bifurcation issue and make a tighter analogy with the corresponding results in the non-generic/non-virtual case.

In this article, however, we shall answer the question negatively. The details of our argument seem to suggest that a robust analogy with the non-generic/non-virtual principles is achieved not with the virtual $C^{(n)}$-cardinals, but with a weakening of that property that drops the requirement that $\lambda<j(\kappa)$. Indeed, our results seems to offer an illuminating resolution of the bifurcation aspect of the results we mentioned from Bagaria, Gitmand and Schindler, because it provides outright virtual large-cardinal equivalents of the stratified generic Vopěnka principles. Because the resulting virtual large cardinals are not necessarily remarkable, however, our main theorem shows that it is relatively consistent with even the full generic Vopěnka principle that there are no $\Sigma_2$-reflecting cardinals and therefore no remarkable cardinals.

Main Theorem.

  1. It is relatively consistent that GBC and the generic Vopěnka principle holds, yet ORD is not Mahlo.
  2. It is relatively consistent that ZFC and the generic Vopěnka scheme holds, yet ORD is not definably Mahlo, and not even $\Delta_2$-Mahlo. In such a model, there can be no $\Sigma_2$-reflecting cardinals and therefore also no remarkable cardinals.

For more, go to the arcticle:

  • V. Gitman and J. D. Hamkins, “A model of the generic Vop\v enka principle in which the ordinals are not $\Delta_2$-Mahlo.” (manuscript under review)  
    @ARTICLE{GitmanHamkins:A-model-of-the-generic-Vopenka-principle-in-which-the-ordinals-are-not-delta_2-Mahlo,
    author = {Victoria Gitman and Joel David Hamkins},
    title = {A model of the generic Vop\v enka principle in which the ordinals are not $\Delta_2$-Mahlo},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    abstract = {},
    keywords = {},
    source = {},
    doi = {},
    eprint = {1706.00843},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/generic-vopenka-ord-not-mahlo},
    }

The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme

  • J. D. Hamkins, “The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme.” (manuscript under review)  
    @ARTICLE{Hamkins:The-Vopenka-principle-is-inequivalent-to-but-conservative-over-the-Vopenka-scheme,
    author = {Joel David Hamkins},
    title = {The {Vop\v{e}nka} principle is inequivalent to but conservative over the {Vop\v{e}nka} scheme},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    abstract = {},
    keywords = {},
    source = {},
    eprint = {1606.03778},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/vopenka-principle-vopenka-scheme},
    }

Abstract. The Vopěnka principle, which asserts that every proper class of first-order structures in a common language admits an elementary embedding between two of its members, is not equivalent over GBC to the first-order Vopěnka scheme, which makes the Vopěnka assertion only for the first-order definable classes of structures. Nevertheless, the two Vopěnka axioms are equiconsistent and they have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for first-order assertions in the language of set theory.

Indras Net-03

The Vopěnka principle is the assertion that for every proper class $\mathcal{M}$ of first-order $\mathcal{L}$-structures, for a set-sized language $\mathcal{L}$, there are distinct members of the class $M,N\in\mathcal{M}$ with an elementary embedding $j:M\to N$ between them. In quantifying over classes, this principle is a single assertion in the language of second-order set theory, and it makes sense to consider the Vopěnka principle in the context of a second-order set theory, such as Godel-Bernays set theory GBC, whose language allows one to quantify over classes. In this article, GBC includes the global axiom of choice.

In contrast, the first-order Vopěnka scheme makes the Vopěnka assertion only for the first-order definable classes $\mathcal{M}$ (allowing parameters). This theory can be expressed as a scheme of first-order statements, one for each possible definition of a class, and it makes sense to consider the Vopěnka scheme in Zermelo-Frankael ZFC set theory with the axiom of choice.

Because the Vopěnka principle is a second-order assertion, it does not make sense to refer to it in the context of ZFC set theory, whose first-order language does not allow quantification over classes; one typically retreats to the Vopěnka scheme in that context. The theme of this article is to investigate the precise meta-mathematical interactions between these two treatments of Vopěnka’s idea.

Main Theorems.

  1. If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka scheme holds, but the Vopěnka principle fails.
  2. If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka principle holds.

It follows that the Vopěnka principle VP and the Vopěnka scheme VS are not equivalent, but they are equiconsistent and indeed, they have the same first-order consequences.

Corollaries.

  1. Over GBC, the Vopěnka principle and the Vopěnka scheme, if consistent, are not equivalent.
  2. Nevertheless, the two Vopěnka axioms are equiconsistent over GBC.
  3. Indeed, the two Vopěnka axioms have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for assertions in the first-order language of set theory. $$\text{GBC}+\text{VP}\vdash\phi\qquad\text{if and only if}\qquad\text{ZFC}+\text{VS}\vdash\phi$$

These results grew out of my my answer to a MathOverflow question of Mike Shulman, Can Vopěnka’s principle be violated definably?, inquiring whether there would always be a definable counterexample to the Vopěnka principle, whenever it should happen to fail. I interpret the question as asking whether the Vopěnka scheme is necessarily equivalent to the Vopěnka principle, and the answer is negative.

The proof of the main theorem involves the concept of a stretchable set $g\subset\kappa$ for an $A$-extendible cardinal, which has the property that for every cardinal $\lambda>\kappa$ and every extension $h\subset\lambda$ with $h\cap\kappa=g$, there is an elementary embedding $j:\langle V_\lambda,\in,A\cap V_\lambda\rangle\to\langle V_\theta,\in,A\cap V_\theta\rangle$ such that $j(g)\cap\lambda=h$. Thus, the set $g$ can be stretched by an $A$-extendibility embedding so as to agree with any given $h$.

Superstrong and other large cardinals are never Laver indestructible

  • J. Bagaria, J. D. Hamkins, K. Tsaprounis, and T. Usuba, “Superstrong and other large cardinals are never Laver indestructible,” to appear in Archive for Mathematical Logic (special issue in honor of Richard Laver).  
    @ARTICLE{BagariaHamkinsTsaprounisUsuba:SuperstrongAndOtherLargeCardinalsAreNeverLaverIndestructible,
    author = {Joan Bagaria and Joel David Hamkins and Konstantinos Tsaprounis and Toshimichi Usuba},
    title = {Superstrong and other large cardinals are never {Laver} indestructible},
    journal = {to appear in Archive for Mathematical Logic (special issue in honor of Richard Laver)},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {},
    abstract = {},
    keywords = {},
    eprint = {1307.3486},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/superstrong-never-indestructible/},
    comment = {http://jdh.hamkins.org/superstrong-never-indestructible/},
    source = {},
    }

Abstract.  Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, $1$-extendible cardinals, $0$-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger.

The large cardinal indestructibility phenomenon, occurring when certain preparatory forcing makes a given large cardinal become necessarily preserved by any subsequent forcing from a large class of forcing notions, is pervasive in the large cardinal hierarchy. The phenomenon arose in Laver’s seminal result that any supercompact cardinal $\kappa$ can be made indestructible by ${\lt}\kappa$-directed closed forcing. It continued with the Gitik-Shelah treatment of strong cardinals; the universal indestructibility of Apter and myself, which produced simultaneous indestructibility for all weakly compact, measurable, strongly compact, supercompact cardinals and others; the lottery preparation, which applies generally to diverse large cardinals; work of Apter, Gitik and Sargsyan on indestructibility and the large-cardinal identity crises; the indestructibility of strongly unfoldable cardinals; the indestructibility of Vopenka’s principle; and diverse other treatments of large cardinal indestructibility. Based on these results, one might be tempted to the general conclusion that all the usual large cardinals can be made indestructible.

In this article, my co-authors and I temper that temptation by proving that certain kinds of large cardinals cannot be made nontrivially indestructible. Superstrong cardinals, we prove, are never Laver indestructible. Consequently, neither are almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals and $1$-extendible cardinals, to name a few. Even the $0$-extendible cardinals are never indestructible, and neither are weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, strongly uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals, when $n\geq 3$. In fact, all these large cardinal properties are superdestructible, in the sense that if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger. Many quite ordinary forcing notions, which one might otherwise have expected to fall under the scope of an indestructibility result, will definitely ruin all these large cardinal properties. For example, adding a Cohen subset to any cardinal $\kappa$ will definitely prevent it from being superstrong—as well as preventing it from being uplifting, $\Sigma_3$-correct, $\Sigma_3$-extendible and so on with all the large cardinal properties mentioned above—in the forcing extension.

Main Theorem. 

  1. Superstrong cardinals are never Laver indestructible.
  2. Consequently, almost huge, huge, superhuge and rank-into-rank cardinals are never Laver indestructible.
  3. Similarly, extendible cardinals, $1$-extendible and even $0$-extendible cardinals are never Laver indestructible.
  4. Uplifting cardinals, pseudo-uplifting cardinals, weakly superstrong cardinals, superstrongly unfoldable cardinals and strongly uplifting cardinals are never Laver indestructible.
  5. $\Sigma_n$-reflecting and indeed $\Sigma_n$-correct cardinals, for each finite $n\geq 3$, are never Laver indestructible.
  6. Indeed—the strongest result here, because it is the weakest notion—$\Sigma_3$-extendible cardinals are never Laver indestructible.

In fact, each of these large cardinal properties is superdestructible. Namely, if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the mentioned large cardinal properties with target $\theta$ or larger.

The proof makes use of a detailed analysis of the complexity of the definition of the ground model in the forcing extension.  These results are, to my knowledge, the first applications of the ideas of set-theoretic geology not making direct references to set-theoretically geological concerns.

Theorem 10 in the article answers (the main case of) a question I had posed on MathOverflow, namely, Can a model of set theory be realized as a Cohen-subset forcing extension in two different ways, with different grounds and different cardinals?  I had been specifically interested there to know whether a cardinal $\kappa$ necessarily becomes definable after adding a Cohen subset to it, and theorem 10 shows indeed that it does:  after adding a Cohen subset to a cardinal, it becomes $\Sigma_3$-definable in the extension, and this fact can be seen as explaining the main theorem above.

Related MO question | CUNY talk

Superstrong cardinals are never Laver indestructible, and neither are extendible, almost huge and rank-into-rank cardinals, CUNY, January 2013

This is a talk for the CUNY Set Theory Seminar on February 1, 2013, 10:00 am.

Abstract.  Although the large cardinal indestructibility phenomenon, initiated with Laver’s seminal 1978 result that any supercompact cardinal $\kappa$ can be made indestructible by $\lt\kappa$-directed closed forcing and continued with the Gitik-Shelah treatment of strong cardinals, is by now nearly pervasive in set theory, nevertheless I shall show that no superstrong strong cardinal—and hence also no $1$-extendible cardinal, no almost huge cardinal and no rank-into-rank cardinal—can be made indestructible, even by comparatively mild forcing: all such cardinals $\kappa$ are destroyed by $\text{Add}(\kappa,1)$, by $\text{Add}(\kappa,\kappa^+)$, by $\text{Add}(\kappa^+,1)$ and by many other commonly considered forcing notions.

This is very recent joint work with Konstantinos Tsaprounis and Joan Bagaria.

nylogic.org | Set Theory Seminar |