What is potentialist second-order logic? Konstanz Actualism and Potentialism Conference 2023

This is a talk for the Actualism and Potentialism Conference at the University of Konstanz, 28-29 September 2023.

Abstract. What is or should be the potentialist account of classes? It turns out that there are several natural implementations of second-order logic in a modal potentialist setting, which arise from differing philosophical conceptions of the nature of the second-order resources. I shall introduce the proposals, analyze their comparative expressive and interpretative powers, and explain how various philosophical attitudes are fulfilled or not for each proposal. This is joint work in progress with Øystein Linnebo

Varieties of potentialism, Oslo, April 2023

This will be an online talk for the Infinity & Intentionality project of Øystein Linnebo in Oslo, 25 April 2023. Zoom link available from the organizers.

Abstract: I shall survey the surprisingly enormous variety of potentialist conceptions, even in the case of arithmetic potentialism, spanning a spectrum from linear inevitabilism and other convergent potentialist conceptions to more radical nonamalgamable branching-possibility potentialist conceptions. Underlying the universe-fragment framework for potentialism, one finds a natural modal vocabulary capable of expressing fine distinctions between the various potentialist ideas, as well as sweeping potentialist principles. Similarly diverse conceptions of ultrafinitism grow out of the analysis. Ultimately, the various convergent potentialist conceptions, I shall argue, are implicitly actualist, reducing to and interpreting actualism via the potentialist translation, whereas the radical-branching nonamalgamable potentialist conception admits no such reduction. 

Pointwise definable and Leibnizian extensions of models of arithmetic and set theory, Madison Logic Seminar, April 2023

Abstract. I shall present a new flexible method showing that every countable model of PA admits a pointwise definable-elementary end-extension. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

UW Madison Logic Seminar, Joel David Hamkins, April 4, 2023

Infinity, University of Notre Dame, Spring 2023

Infinity

Philosophy 20607 01 (32582)

University of Notre Dame                                                                              Spring 2023

Instructor: Joel David Hamkins, O’Hara Professor of Philosophy and Mathematics
3:30-4:45 Tuesdays + Thursdays, DeBartolo Hall 208

Course Description. This course will be a mathematical and philosophical exploration of infinity, covering a wide selection of topics illustrating this rich, fascinating concept—the mathematics and philosophy of the infinite.

Along the way, we shall find paradox and fun—and all my favorite elementary logic conundrums and puzzles. It will be part of my intention to reveal what I can of the quirky side of mathematics and logic in its connection with infinity, but with a keen eye open for when issues happen to engage with philosophically deeper foundational matters.

The lectures will be based on the chapters of my forthcoming book, The Book of Infinity, currently in preparation, and currently being serialized and made available on the Substack website as I explain below.

Topics. Among the topics we shall aim to discuss will be:

  • The Book of Numbers
  • Zeno’s paradox
  • The infinite coastline paradox
  • Supertasks
  • Largest number contest
  • The googol plex chitty bang stack hierarchy
  • Galileo’s Salviati on infinity
  • Hilbert’s Grand Hotel
  • The uncountable
  • How to count (to infinity and beyond!)
  • Slaying the Hydra
  • Transfinite recursion
  • The continuum hypothesis
  • The axiom of choice
  • Orders of infinity
  • The lattice of subsets of ℕ
  • Potential versus actual infinity
  • Confounding puzzles of infinity
  • Infinite liars
  • Infinite utilitarianism
  • Infinite computation
  • Infinite games
  • Indescribable numbers
  • Extremely remote events of enormous consequence
  • The sand reckoner
  • Paradox in high dimension
  • The outer limits of reason
  • Puzzles of epistemic logic and the problem of common knowledge

Mathematical background. The course will at times involve topics and concepts of a fundamentally mathematical nature, but no particular mathematical background or training will be assumed. Nevertheless, it is expected that students be open to mathematical thinking and ideas, and furthermore it is a core aim of the course to help develop the student’s mastery over various mathematical concepts connected with infinity.  

Readings. The lectures will be based on readings from the topic list above that will be made available on my Substack web page, Infinitely More. Readings for the topic list above will be gradually released there during the semester. Each reading will consist of a chapter essay my book-in-progress, The Book of Infinity, which is being serialized on the Substack site specifically for this course. In some weeks, there will be supplemental readings from other sources.

Student access. I will issue subscription invitations to the Substack site for all registered ND students using their ND email, with free access to the site during the semester, so that students can freely access the readings.  Students are free to manage their subscriptions however they see fit. Please inform me of any access issues. There are some excellent free Substack apps available for Apple iOS and Android for reading Substack content on a phone or other device.

Discussion forum. Students are welcome to participate in the discussion forums provided with the readings to discuss the topics, the questions, to post answer ideas, or engage in the discussion there. I shall try to participate myself by posting comments or hints.

Homework essays. Students are expected to engage fully with every topic covered in the class. Every chapter concludes with several Questions for Further Thought, with which the students should engage. It will be expected that students complete approximately half of the Questions for Further thought. Each question that is answered should be answered essay-style with a mini-essay of about half a page or more.

Extended essays. A student may choose at any time to answer one of the Questions for Further Thought more fully with a more extended essay of two or three pages, and in this case, other questions on that particular topic need not be engaged. Every student should plan to exercise this option at least twice during the semester.

Final exam.  There will be a final exam consisting of questions similar to those in the Questions for Further Thought, covering every topic that was covered in the course. The final grade will be based on the final exam and on the submitted homework solutions.

Open Invitation. Students outside of Notre Dame are welcome to follow along with the Infinity course, readings, and online discussion. Simply subscribe at Infinitely More, keep up with the readings and participate in the discussions we shall be having in the forums there.

Workshop on the Set-theoretic Multiverse, Konstanz, September 2022

Masterclass of “The set-theoretic multiverse” ten years after

Focused on mathematical and philosophical aspects of the set-theoretic multiverse and the pluralist debate in the philosophy of set theory, this workshop will have a master class on potentialism, a series of several speakers, and a panel discussion. To be held 21-22 September 2022 at the University of Konstanz, Germany. (Contact organizers for Zoom access.)

I shall make several contributions to the meeting.

Master class tutorial on potentialism

I shall give a master class tutorial on potentialism, an introduction to the general theory of potentialism that has been emerging in recent work, often developed as a part of research on set-theoretic pluralism, but just as often branching out to a broader application. Although the debate between potentialism and actualism in the philosophy of mathematics goes back to Aristotle, recent work divorces the potentialist idea from its connection with infinity and undertakes a more general analysis of possible mathematical universes of any kind. Any collection of mathematical structures forms a potentialist system when equipped with an accessibility relation (refining the submodel relation), and one can define the modal operators of possibility $\Diamond\varphi$, true at a world when $\varphi$ is true in some larger world, and necessity $\Box\varphi$, true in a world when $\varphi$ is true in all larger worlds. The project is to understand the structures more deeply by understanding their modal nature in the context of a potentialist system. The rise of modal model theory investigates very general instances of potentialist system, for sets, graphs, fields, and so on. Potentialism for the models of arithmetic often connects with deeply philosophical ideas on ultrafinitism. And the spectrum of potentialist systems for the models of set theory reveals fundamentally different conceptions of set-theoretic pluralism and possibility.

The multiverse view on the axiom of constructibility

I shall give a talk on the multiverse perspective on the axiom of constructibility. Set theorists often look down upon the axiom of constructibility V=L as limiting, in light of the fact that all the stronger large cardinals are inconsistent with this axiom, and furthermore the axiom expresses a minimizing property, since $L$ is the smallest model of ZFC with its ordinals. Such views, I argue, stem from a conception of the ordinals as absolutely completed. A potentialist conception of the set-theoretic universe reveals a sense in which every set-theoretic universe might be extended (in part upward) to a model of V=L. In light of such a perspective, the limiting nature of the axiom of constructibility tends to fall away.

Panel discussion: The multiverse view—challenges for the next ten years

This will be a panel discussion on the set-theoretic multiverse, with panelists including myself, Carolin Antos-Kuby, Giorgio Venturi, and perhaps others.

Pointwise definable end-extensions of the universe, Sophia 2022, Salzburg

This will be an online talk for the Salzburg Conference for Young Analytical Philosophy, the SOPhiA 2022 Salzburgiense Concilium Omnibus Philosophis Analyticis, with a special workshop session Reflecting on ten years of the set-theoretic multiverse. The workshop will meet Thursday 8 September 2022 4:00pm – 7:30pm.

The name of the workshop (“Reflecting on ten years…”), I was amazed to learn, refers to the period since my 2012 paper, The set-theoretic multiverse, in the Review of Symbolic Logic, in which I had first introduced my arguments and views concerning set-theoretic pluralism. I am deeply honored by this workshop highlighting my work in this way and focussing on the developments growing out of it.

In this talk, I shall engage in that discussion by presenting some very new work connecting several topics that have been prominent in discussions of the set-theoretic multiverse, namely, set-theoretic potentialism and pointwise definability.

Abstract. Using the universal algorithm and its generalizations, I shall present new work on the possibility of end-extending any given countable model of arithmetic or set theory to a pointwise definable model, one in which every object is definable without parameters. Every countable model of Peano arithmetic, for example, admits an end-extension to a pointwise definable model. And similarly, every countable model of ZF set theory admits an end-extension to a pointwise definable model of ZFC+V=L, as well as to pointwise definable models of other sufficient theories, accommodating large cardinals. I shall discuss the philosophical significance of these results in the philosophy of set theory with a view to potentialism and the set-theoretic multiverse.

Nonlinearity and illfoundedness in the hierarchy of consistency strength and the question of naturality, Italy (AILA), September 2022

This will be a talk for the meeting of The Italian Association for Logic and its Applications (AILA) in Caserta, Italy 12-15 September 2022.

Abstract. Set theorists and philosophers of mathematics often point to a mystery in the foundations of mathematics, namely, that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Why should it be? The phenomenon is thought to carry profound significance for the philosophy of mathematics, perhaps pointing us toward the ultimately correct mathematical theories, the “one road upward.” And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features, however, are often dismissed as unnatural or as Gödelian trickery. In this talk, I aim to rebut that criticism by presenting a variety of natural hypotheses that reveal ill-foundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength.