Varieties of potentialism, Oslo, April 2023

This will be an online talk for the Infinity & Intentionality project of Øystein Linnebo in Oslo, 25 April 2023. Zoom link available from the organizers.

Abstract: I shall survey the surprisingly enormous variety of potentialist conceptions, even in the case of arithmetic potentialism, spanning a spectrum from linear inevitabilism and other convergent potentialist conceptions to more radical nonamalgamable branching-possibility potentialist conceptions. Underlying the universe-fragment framework for potentialism, one finds a natural modal vocabulary capable of expressing fine distinctions between the various potentialist ideas, as well as sweeping potentialist principles. Similarly diverse conceptions of ultrafinitism grow out of the analysis. Ultimately, the various convergent potentialist conceptions, I shall argue, are implicitly actualist, reducing to and interpreting actualism via the potentialist translation, whereas the radical-branching nonamalgamable potentialist conception admits no such reduction. 

Pointwise definable and Leibnizian extensions of models of arithmetic and set theory, Madison Logic Seminar, April 2023

Abstract. I shall present a new flexible method showing that every countable model of PA admits a pointwise definable-elementary end-extension. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

UW Madison Logic Seminar, Joel David Hamkins, April 4, 2023

Workshop on the Set-theoretic Multiverse, Konstanz, September 2022

Masterclass of “The set-theoretic multiverse” ten years after

Focused on mathematical and philosophical aspects of the set-theoretic multiverse and the pluralist debate in the philosophy of set theory, this workshop will have a master class on potentialism, a series of several speakers, and a panel discussion. To be held 21-22 September 2022 at the University of Konstanz, Germany. (Contact organizers for Zoom access.)

I shall make several contributions to the meeting.

Master class tutorial on potentialism

I shall give a master class tutorial on potentialism, an introduction to the general theory of potentialism that has been emerging in recent work, often developed as a part of research on set-theoretic pluralism, but just as often branching out to a broader application. Although the debate between potentialism and actualism in the philosophy of mathematics goes back to Aristotle, recent work divorces the potentialist idea from its connection with infinity and undertakes a more general analysis of possible mathematical universes of any kind. Any collection of mathematical structures forms a potentialist system when equipped with an accessibility relation (refining the submodel relation), and one can define the modal operators of possibility $\Diamond\varphi$, true at a world when $\varphi$ is true in some larger world, and necessity $\Box\varphi$, true in a world when $\varphi$ is true in all larger worlds. The project is to understand the structures more deeply by understanding their modal nature in the context of a potentialist system. The rise of modal model theory investigates very general instances of potentialist system, for sets, graphs, fields, and so on. Potentialism for the models of arithmetic often connects with deeply philosophical ideas on ultrafinitism. And the spectrum of potentialist systems for the models of set theory reveals fundamentally different conceptions of set-theoretic pluralism and possibility.

The multiverse view on the axiom of constructibility

I shall give a talk on the multiverse perspective on the axiom of constructibility. Set theorists often look down upon the axiom of constructibility V=L as limiting, in light of the fact that all the stronger large cardinals are inconsistent with this axiom, and furthermore the axiom expresses a minimizing property, since $L$ is the smallest model of ZFC with its ordinals. Such views, I argue, stem from a conception of the ordinals as absolutely completed. A potentialist conception of the set-theoretic universe reveals a sense in which every set-theoretic universe might be extended (in part upward) to a model of V=L. In light of such a perspective, the limiting nature of the axiom of constructibility tends to fall away.

Panel discussion: The multiverse view—challenges for the next ten years

This will be a panel discussion on the set-theoretic multiverse, with panelists including myself, Carolin Antos-Kuby, Giorgio Venturi, and perhaps others.

Set-theoretic and arithmetic potentialism: the state of current developments, CACML 2020

This will be a plenary talk for the Chinese Annual Conference on Mathematical Logic (CACML 2020), held online 13-15 November 2020. My talk will be held 14 November 17:00 Beijing time (9 am GMT).

Potentialist perspectives

Abstract. Recent years have seen a flurry of mathematical activity in set-theoretic and arithmetic potentialism, in which we investigate a collection of models under various natural extension concepts. These potentialist systems enable a modal perspective—a statement is possible in a model, if it is true in some extension, and necessary, if it is true in all extensions. We consider the models of ZFC set theory, for example, with respect to submodel extensions, rank-extensions, forcing extensions and others, and these various extension concepts exhibit different modal validities. In this talk, I shall describe the state of current developments, including the most recent tools and results.