Abstract. There is an unexplained logical mystery in the foundations of mathematics, namely, our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Why should it be? The phenomenon is thought to carry significance for foundations, perhaps pointing us, some have argued, toward the ultimately correct mathematical theories, the “one road upward.” And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements commonly used to illustrate these features, however, are often dismissed as unnatural or as Gödelian trickery. In this talk, however, I aim to rebut that criticism by presenting a variety of natural hypotheses that reveal illfoundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength. This will lead to discussion of the role and meaning of “natural” in the foundations of mathematics.

The meeting will be in person and online. Those who wish to attend via Zoom, please write to Daniel Isaacson.

This will be a talk (in person) for the Logic Seminar of the Mathematics Institute of the Univerisity of Oxford, May 18, 2023 5pm, Wiles Building L3.

Abstract: I shall present a new flexible method showing that every countable model of PA admits a pointwise definable end-extension, one in which every point is definable without parameters. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

This will be an online Zoom talk for the Boston Computaton Club, a graduate seminar in computer science at Northeastern University, 16 June 12pm EST (note change in date/time). Contact the organizers for the Zoom link.

Abstract: Many familiar finite games admit natural infinitary analogues, which may captivate and challenge us with sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.

This will be a talk for the CUNY Set Theory Seminar on May 5, 2023 10am. Contact the organizers for the Zoom link.

Abstract. The standard set-theoretic distinction between sets and classes instantiates in important respects the Fregean distinction between objects and concepts, for in set theory we commonly take the universe of sets as a realm of objects to be considered under the guise of diverse concepts, the definable classes, each serving as a predicate on that domain of individuals. Although it is commonly held that in a very general manner, there can be no association of classes with objects in a way that fulfills Frege’s Basic Law V, nevertheless, in the ZF framework, it turns out that we can provide a completely deflationary account of this and other Fregean abstraction principles. Namely, there is a mapping of classes to objects, definable in set theory in senses I shall explain (hence deflationary), associating every first-order parametrically definable class $F$ with a set object $\varepsilon F$, in such a way that Basic Law V is fulfilled:

$$\varepsilon F =\varepsilon G\iff\forall x\ (Fx\leftrightarrow Gx).$$

Russell’s elementary refutation of the general comprehension axiom, therefore, is improperly described as a refutation of Basic Law V itself, but rather refutes Basic Law V only when augmented with powerful class comprehension principles going strictly beyond ZF. The main result leads also to a proof of Tarski’s theorem on the nondefinability of truth as a corollary to Russell’s argument. A central goal of the project is to highlight the issue of definability and deflationism for the extension assignment problem at the core of Fregean abstraction.

Abstract: I shall explore several senses in which set-theoretic forcing can be seen as a computational process on the models of set theory. Given an oracle for the atomic or elementary diagram of a model (M,∈M) of set theory, for example, there are senses in which one may compute M-generic filters G⊂ℙ∈M over that model and compute the diagrams of the corresponding forcing extensions M[G]. Meanwhile, no such computational process is functorial, for there must always be isomorphic alternative presentations of the same model of set theory that lead by the computational process to non-isomorphic forcing extensions. Indeed, there is no Borel function providing generic filters that is functorial in this sense. This is joint work with myself, Russell Miller and Kameryn Williams.

The talk took place in “The Barn” in the upper space between the Reyerson Laboratory and Eckhart Hall, where the University of Chicago Department of Mathematics is located:

Abstract: I shall survey the surprisingly enormous variety of potentialist conceptions, even in the case of arithmetic potentialism, spanning a spectrum from linear inevitabilism and other convergent potentialist conceptions to more radical nonamalgamable branching-possibility potentialist conceptions. Underlying the universe-fragment framework for potentialism, one finds a natural modal vocabulary capable of expressing fine distinctions between the various potentialist ideas, as well as sweeping potentialist principles. Similarly diverse conceptions of ultrafinitism grow out of the analysis. Ultimately, the various convergent potentialist conceptions, I shall argue, are implicitly actualist, reducing to and interpreting actualism via the potentialist translation, whereas the radical-branching nonamalgamable potentialist conception admits no such reduction.

I am a commentator at the Pacific APA 2023 conference in San Francisco in a Book Symposium session focused on the book of Catarina Duthil Novaes, The Dialogical Roots of Deduction.

I think very highly of Novaes’s book (my book review is here) and I nominated it for the Lakatos prize, which I am very glad to say that she won. This is particularly appropriate in my view in light of Lakatos’s own use of dialogues in expressing his perspectives on the philosophy of mathematics and the nature of proof.

I shall be a speaker at the book symposium, intending to place the dialogical perspective on proof in the context of a variety of other views of proof. I shall conclude with a few criticisms of the book, which I hope might lead to interesting discussion.

Abstract. I shall present a new flexible method showing that every countable model of PA admits a pointwise definable-elementary end-extension. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

This will be a talk 15 March 2023 for the Mathematics Department of the University of Barcelona, organized jointly with the Set Theory Seminar.

Abstract. According to the math tea argument, perhaps heard at a good afternoon tea, there must be some real numbers that we can neither describe nor define, since there are uncountably many real numbers, but only countably many definitions. Is it correct? In this talk, I shall discuss the phenomenon of pointwise definable structures in mathematics, structures in which every object has a property that only it exhibits. A mathematical structure is Leibnizian, in contrast, if any pair of distinct objects in it exhibit different properties. Is there a Leibnizian structure with no definable elements? We shall discuss many interesting elementary examples, eventually working up to the proof that every countable model of set theory has a pointwise definable extension, in which every mathematical object is definable, including every real number, every function, every set. We shall discuss the relevance for the math tea argument.

This will be a talk 31 January 2-3 for the Notre Dame Logic Seminar.

Abstract. I shall give a general introduction and account of the main elements of set-theoretic geology, the motivating questions, the central definitions, and the main results, including newer advances. We’ll discuss ground models, the ground axiom, the mantle, the ground-model definability theorem, Usuba’s results on downward directedness and more.

This was an interview with Robinson Erhardt on Robinson’s Podcast, part of his series of interviews with various philosophers, including many philosophers of mathematics and more.

We had a wonderfully wide-ranging discussion about the philosophy of mathematics, the philosophy of set theory, pluralism, and many other topics. The main focus was the topic of infinity, following selections from my new book, The Book of Infinity, currently being serialized on my substack, joeldavidhamkins.substack.com, with discussion of Zeno’s paradox, the Chocolatier’s Game, Hilbert’s Grand Hotel and more.

Robinson compiled the following outline with links to special parts of the interview:

I am deeply honored to be invited by la Caixa Foundation to give a talk in “The Greats of Science” talk series, to be held 16 March 2023 at the CosmoCaixa Science Museum in Barcelona. This talk series aspires to host “prestigious figures who have contributed towards admirable milestones, studies or discoveries,” who will bring the science to a general audience, aiming to “give viewers the chance to explore the most relevant parts of contemporary sicence through the top scientists of the moment.” Previous speakers include Jane Goodall and nearly a dozen Nobel Prize winners since 2018.

My topic will be: Strategic thinking in infinite games.

Have you time for an infinite game? Many familiar finite games admit natural infinitary analogues, infinite games that may captivate and challenge us with intriguing patterns and sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.

The theory builds upon the classical finitary result of Zermelo (1913), the fundamental theorem of finite games, which shows that in every finite two-player game of perfect information, one of the players must have a winning strategy or both players have draw-or-better strategies. This result extends to certain infinitary games by means of the ordinal game-value analysis, which assigns transfinite ordinal values $\alpha$ to positions in a game, generalizing the familiar mate-in-$n$ idea of chess to the infinite. Current work realizes high transfinite game values in infinite chess, infinite draughts (checkers), infinite Go, and many other infinite games. The highest-known game value arising in infinite chess is the infinite ordinal $\omega^4$, and every countable ordinal arises in infinite draughts, the optimal result. Games exhibiting high transfinite ordinal game values have a surreal absurd character of play. The winning player will definitely win in finitely many moves, but the doomed losing player controls the process with absurdly long deeply nested patterns of forcing moves that must be answered, as though counting down from the infinite game value—when 0 is reached, the game is over.

This will be an online talk for the MOPA Seminar at CUNY on 22 November 2022 1pm. Contact organizers for Zoom access.

Abstract. I shall introduce a flexible new method showing that every countable model of PA admits a pointwise definable end-extension, one in which every individual is definable without parameters. And similarly for models of set theory, in which one may also achieve the Barwise extension result—every countable model of ZF admits a pointwise definable end-extension to a model of ZFC+V=L, or indeed any theory arising in a suitable inner model. A generalization of the method shows that every model of arithmetic of size at most continuum admits a Leibnizian extension, and similarly in set theory.

This will be a talk for the Notre Dame logic seminar, 11 October 2022, 2pm in Hales-Healey Hall.

Abstract. I shall present very new results on pointwise definable and Leibnizian end-extensions of models of arithmetic and set theory. Using the universal algorithm, I shall present a new flexible method showing that every countable model of PA admits a pointwise definable $\Sigma_n$-elementary end-extension. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

Abstract. According to the math tea argument, perhaps heard at a good afternoon tea, there must be some real numbers that we can neither describe nor define, since there are uncountably many real numbers, but only countably many definitions. Is it correct? In this talk, I shall discuss the phenomenon of pointwise definable structures in mathematics, structures in which every object has a property that only it exhibits. A mathematical structure is Leibnizian, in contrast, if any pair of distinct objects in it exhibit different properties. Is there a Leibnizian structure with no definable elements? We shall discuss many interesting elementary examples, eventually working up to the proof that every countable model of set theory has a pointwise definable extension, in which every mathematical object is definable.