# A common forcing extension obtained via different forcing notions

I’d like to write about the situation that occurs in set theory when a forcing extension $V[G]=V[H]$ arises over a ground model $V$ in two different ways simultaneously, using generic filters over two different forcing notions $G\subset\mathbb{B}$ and $H\subset\mathbb{C}$. The general fact, stated in theorem 1, is that in this case, the two forcing notions are actually isomorphic on a cone $\mathbb{B}\upharpoonright b\cong\mathbb{C}\upharpoonright c$, with the isomorphism carrying the one generic filter to the other. In other words, below these respective conditions $b$ and $c$, the forcing notions and the respective generic filters are not actually different.

I have always assumed that this fact was part of the classical forcing folklore results, but it doesn’t seem to be mentioned explicitly in the usual forcing literature (it appears as lemma 25.5 in Jech’s book), and so I am writing an account of it here. Victoria Gitman and I have need of it in a current joint project. (Bob Solovay mentions in the comments below that the result is due to him, and provides a possible 1975 reference.)

Theorem 1. If $V[G]=V[H]$, where $G\subset \mathbb{B}$ and $H\subset\mathbb{C}$ are $V$-generic filters on the complete Boolean algebras $\mathbb{B}$ and $\mathbb{C}$, respectively, then there are conditions $b\in\mathbb{B}$ and $c\in\mathbb{C}$ such that $\mathbb{B}\upharpoonright b$ is isomorphic to $\mathbb{C}\upharpoonright c$ by an isomorphism carrying $G$ to $H$.

The proof will also establish the following related result, concerning the situation where one extension is merely contained in the other.

Theorem 2. If $V[H]\subset V[G]$, where $G\subset\mathbb{B}$ and $H\subset\mathbb{C}$ are $V$-generic filters on the complete Boolean algebras $\mathbb{B}$ and $\mathbb{C}$, respectively, then there are conditions $b\in\mathbb{B}$ and $c\in\mathbb{C}$ such that $\mathbb{C}\upharpoonright c$ is isomorphic to a complete subalgebra of $\mathbb{B}\upharpoonright b$.

By $\mathbb{B}\upharpoonright b$, where $b$ is a condition in $\mathbb{B}$ (that is, a nonzero element of $\mathbb{B}$), what I mean is the Boolean algebra consisting of the interval $[0,b]$ in $\mathbb{B}$, using relative complement $b-a$ as the negation of $a$. This is the complete Boolean algebra that arises when forcing with the conditions in $\mathbb{B}$ below $b$.

Proof: In order to prove theorem 2, let me assume at first only that $V[H]\subset V[G]$. It follows that $H=\dot H_G$ for some $\mathbb{B}$-name $\dot H$, and we may choose a condition $b\in G$ forcing that $\dot H$ is a $\check V$-generic filter on $\check{\mathbb{C}}$.

I claim that there is some $c\in H$ such that every $d\leq c$ has $b\wedge [\![\check d\in\dot H]\!]^{\mathbb{B}}\neq 0$. Note that every $d\in H$ has $[\![\check d\in\dot H]\!]\in G$ by the truth lemma, since $H=\dot H_G$, and so $b\wedge [\![\check d\in\dot H]\!]^{\mathbb{B}}\neq 0$ for $d\in H$. If $c\in H$ forces that every $d$ in the generic filter has that property, then indeed every $d\leq c$ has $b\wedge [\![\check d\in\dot H]\!]^{\mathbb{B}}\neq 0$ as claimed.
In other words, from the perspective of the $\mathbb{B}$ forcing, every $d\leq c$ has a nonzero possibility to be in $\dot H$.

Define $\pi:\mathbb{C}\upharpoonright c\to\mathbb{B}$ by $$\pi(d)=b\wedge [\![\check d\in\dot H]\!]^{\mathbb{B}}.$$ Using the fact that $b$ forces that $\dot H$ is a filter, it is straightforward to verify that

• $d\leq e\implies \pi(d)\leq\pi(e)$, since if $d\leq e$ and $d\in H$, then $e\in H$.
• $\pi(d\wedge e)=\pi(d)\wedge \pi(e)$, since $[\![\check d\in\dot H]\!]\wedge[\![\check e\in \dot H]\!]=[\![\check{(b\wedge e)}\in\dot H]\!]$.
• $\pi(d-e)=\pi(d)-\pi(e)$, since $[\![\check{(d-e)}\in\dot H]\!]=[\![\check d\in\dot H]\!]-[\![\check e\in\dot H]\!]$.

Thus, $\pi$ is a Boolean algebra embedding of $\mathbb{C}\upharpoonright c$ into $\mathbb{B}\upharpoonright\pi(c)$.

Let me argue that this embedding is a complete embedding. Suppose that $a=\bigvee A$ for some subset $A\subset\mathbb{C}\upharpoonright c$ with $A\in V$. Since $H$ is $V$-generic, it follows that $a\in H$ just in case $H$ meets $A$. Thus, $[\![\check a\in\dot H]\!]=[\![\exists x\in\check A\, x\in \dot H]\!]=\bigvee_{x\in A}[\![\check x\in\dot H]\!]$, and so $\pi(\bigvee A)=\bigvee_{x\in A}\pi(x)$, and so $\pi$ is complete, as desired. This proves theorem 2.

To prove theorem 1, let me now assume fully that $V[G]=V[H]$. In this case, there is a $\mathbb{C}$ name $\dot G$ for which $G=\dot G_H$. By strengthening $b$, we may assume without loss that $b$ also forces that, that is, that $b$ forces $\Gamma=\check{\dot G}_{\dot H}$, where $\Gamma$ is the canonical $\mathbb{B}$-name for the generic object, and $\check{\dot G}$ is the $\mathbb{B}$-name of the $\mathbb{C}$-name $\dot G$. Let us also strengthen $c$ to ensure that $c$ forces $\dot G$ is $\check V$-generic for $\check{\mathbb{C}}$. For $d\leq c$ define $\pi(d)=[\![\check d\in\dot H]\!]^{\mathbb{B}}$ as above, which provides a complete embedding of $\mathbb{C}\upharpoonright c$ to $\mathbb{B}\upharpoonright\pi(c)$. I shall now argue that this embedding is dense below $\pi(c)$. Suppose that $a\leq \pi(c)$ in $\mathbb{B}$. Since $a$ forces $\check a\in\Gamma$ and also $\check c\in\dot H$, it must also force that there is some $d\leq c$ in $\dot H$ that forces via $\mathbb{C}$ over $\check V$ that $\check a\in\dot G$. So there must really be some $d\leq c$ forcing $\check a\in\dot G$. So $\pi(d)$, which forces $\check d\in\dot H$, will also force $\check a\in\check{\dot G}_{\dot H}=\Gamma$, and so $\pi(d)\Vdash_{\mathbb{B}}\check a\in\Gamma$, which means $\pi(d)\leq a$ in ${\mathbb{B}}$. Thus, the range of $\pi$ on $\mathbb{C}\upharpoonright c$ is dense below $\pi(c)$, and so $\pi$ is a complete dense embedding of ${\mathbb{C}}\upharpoonright c$ to ${\mathbb{B}}\upharpoonright \pi(c)$. Since these are complete Boolean algebras, this means that $\pi$ is actually an isomorphism of $\mathbb{C}\upharpoonright c$ with $\mathbb{B}\upharpoonright \pi(c)$, as desired.

Finally, note that if $d\in H$ below $c$, then since $H=\dot H_G$, it follows that $[\![\check d\in\dot H]\!]\in G$, which is to say $\pi(d)\in G$, and so $\pi$ carries $H$ to $G$ on these cones. So $\pi^{-1}$ is the isomorphism stated in theorem 1.QED

Finally, I note that one cannot get rid of the need to restrict to cones, since it could be that $\mathbb{B}$ and $\mathbb{C}$ are the lottery sums of a common forcing notion, giving rise to $V[G]=V[H]$, together with totally different non-isomorphic forcing notions below some other incompatible conditions. So we cannot expect to prove that $\mathbb{B}\cong\mathbb{C}$, and are content to get merely that $\mathbb{B}\upharpoonright b\cong\mathbb{C}\upharpoonright c$, an isomorphism below respective conditions.