- G. Fuchs and J. D. Hamkins, “The Bukovský-Dehornoy phenomenon for Boolean ultrapowers.” (manuscript under review)
`@ARTICLE{FuchsHamkins:TheBukovskyDehornoyPhenomenonForBooleanUltrapowers, AUTHOR = {Gunter Fuchs and Joel David Hamkins}, TITLE = {The {Bukovsk\'y-Dehornoy} phenomenon for {Boolean} ultrapowers}, JOURNAL = {}, YEAR = {}, volume = {}, number = {}, pages = {}, month = {}, note = {manuscript under review}, abstract = {}, keywords = {}, source = {}, eprint = {1707.06702}, archivePrefix = {arXiv}, primaryClass = {math.LO}, url = {http://jdh.hamkins.org/boolean-ultrapowers-bukovsky-dehornoy-phenomenon}, }`

**Abstract. **We show that while the length $\omega$ iterated ultrapower by a normal ultrafilter is a Boolean ultrapower by the Boolean algebra of Příkrý forcing, it is consistent that no iteration of length greater than $\omega$ (of the same ultrafilter and its images) is a Boolean ultrapower. For longer iterations, where different ultrafilters are used, this is possible, though, and we give Magidor forcing and a generalization of Příkrý forcing as examples. We refer to the discovery that the intersection of the finite iterates of the universe by a normal measure is the same as the generic extension of the direct limit model by the critical sequence as the Bukovský-Dehornoy phenomenon, and we develop a criterion (the existence of a simple skeleton) for when a version of this phenomenon holds in the context of Boolean ultrapowers.