Famous quotations in their original first-order language

Historians everywhere are shocked by the recent discovery that many of our greatest thinkers and poets had first expressed their thoughts and ideas in the language of first-order predicate logic, and sometimes modal logic, rather than in natural language. Some early indications of this were revealed in the pioneering historical research of Henle, Garfield and Tymoczko, in their work Sweet Reason:

American Quotes

We now know that the phenomenon is widespread!  As shown below, virtually all of our cultural leaders have first expressed themselves in the language of first-order predicate logic, before having been compromised by translations into the vernacular.

$\neg\lozenge\neg\exists s\ G(i,s)$
Rolling Stones 04.jpg

$(\exists x\ x=i)\vee\neg(\exists x\ x=i)$

$\left(\strut\neg\exists t\ \exists d\ \strut D(d)\wedge F(d)\wedge S_t(i,d)\right)\wedge\left(\strut\neg\exists t\ w\in_t \text{Ro}\right)\wedge\left(\strut \text{Ru}(i,y)\to \lozenge\text{C}(y,i,qb)\wedge \text{Ru}(i)\wedge\text{Ru}(i)\wedge\text{Ru}(i)\wedge\text{Ru}(i)\right)$

Lorde Laneway 7 (cropped).jpg

$\neg B_i \exists g\ G(g)$
Dawkins aaconf.jpg

$\forall b\ \left(\strut G(b)\wedge B(b)\to \exists x\ (D(b,x)\wedge F(x))\right)$
Do Mayor armadura.svg

$(\exists!w\ W_1(w)\wedge W_2(w)), \ \ \exists w\ W_1(w)\wedge W_2(w)\wedge S(y,w)$?
Moby Dick final chase

$\exists s\ Y(s)\wedge S(s)\wedge \forall x\ L(x,s)$
The Beatles in America

$\exists p\ \left[\forall c\ (c\neq p\to G(c))\right]\wedge\neg G(p)$
Statue of Peter Pan and Tinkerbell in Dunedin Botanic Gardens, Dunedin, New Zealand.jpg

$\exists l\ \left[L(l)\wedge \boxdot_l\left({}^\ulcorner\,\forall g\ \text{Gl}(g)\to \text{Gd}(g){}^\urcorner\right)\wedge\exists s\ \left(SH(s)\wedge B(l,s)\right)\right]$

$(\forall p\in P\ \exists c\in\text{Ch}\ c\in p)\wedge(\forall g\in G\ \exists c\in\text{Cr}\ c\in g)$
Herbert Hoover.jpg

$\forall x (F(w,x)\to x=F)$


$B\wedge \forall x\ \left[S(x)\wedge T(x)\to \exists!w\ W(w)\wedge\text{Gy}(x,w)\wedge\text{Gi}(x,w)\right]$

Lewis Carroll Self Portrait 1856 circa.jpg

$\exists!x\ D(x)\wedge D(\ {}^\ulcorner G(i){}^\urcorner\ )$

Oscar Wilde portrait by Napoleon Sarony - albumen.jpg

$\forall f\ \forall g\ \left(\strut H(f)\wedge H(g)\to f\sim g\right)\wedge\forall f\ \forall g\ \left(\strut\neg H(f)\wedge \neg H(g)\to \neg\ f\sim g\right)$
Tolstoy by Repin 1901 cropped.jpg

$\exists w\ \left(\strut O(w)\wedge W(w)\wedge\exists s\ (S(s)\wedge L(w,s))\right)$

There Was An Old Woman Who Lived In A Shoe - WW Denslow - Project Gutenberg etext 18546.jpg

$C(i)\to \exists x\ x=i$

Frans Hals - Portret van René Descartes.jpg

$\neg\neg\left(\strut H(y)\wedge D(y)\right)$

Elvis Presley first national television appearance 1956.jpg

$\neg (d\in K)\wedge\neg (t\in K)$

Judy Garland in The Wizard of Oz trailer 2.jpg

$W(i,y)\wedge N(i,y)\wedge\neg\neg\lozenge L(i,y)\wedge \left(\strut \neg\ \frac23<0\to\neg S(y)\right)$ Meat Loaf in performance (New York, 2004).jpg

$\lozenge \text{CL}(i)\wedge\lozenge C(i)\wedge \lozenge (\exists x\ x=i)\wedge B(i)$

Marlon brando waterfront 6.jpg

$\forall x\ K_x({}^\ulcorner \forall m\ \left[M(m)\wedge S(m)\wedge F(m)\to\boxdot\ \exists w\ M(m,w)\right]{}^\urcorner)$

Jane Austen coloured version.jpg

$\forall e\forall h\ \left(\strut G(e)\wedge E(e)\wedge H(h)\to \neg L(i,e,h)\right)$
Theodor Seuss Geisel (01037v).jpg

$\forall p\ \boxdot\text{St}(p)$

Bob Dylan June 23 1978.jpg

$\lozenge^w_i\ \forall g\in G\ \lozenge (g\in C)$

The Beach Boys Lost Concert.jpg

$\forall m\ (a\leq_C m)$

T S Eliot Simon Fieldhouse.jpg

$\forall t\ (p\geq t)\wedge \forall t\ (p\leq t)$

Charles Dickens - Project Gutenberg eText 13103.jpg

$\forall x\ (F(x)\iff x=h)$

Emily Dickinson daguerreotype (cropped).jpg

$(\forall x\ \forall y\ x=y)\wedge(\exists x\ \exists y ([\![x=x]\!]>[\![y=y]\!]))$

George Orwell.jpg

$\forall p\ \left(\strut\neg W(p)\to \neg S(p)\right)$


$\forall p \left(\strut E(p)\to \forall h\in H\ A(p,h)\right)$
Gustave Doré - Dante Alighieri - Inferno - Plate 8 (Canto III - Abandon all hope ye who enter here)

Dear readers, in order to assist with this important historical work, please provide translations into ordinary English in the comment section below of any or all of the assertions listed above. We are interested to make sure that all our assertions and translations are accurate.

In addition, any readers who have any knowledge of additional instances of famous quotations that were actually first made in the language of first-order predicate logic (or similar) are encouraged to post comments below detailing their knowledge. I will endeavor to add such additional examples to the list.

Thanks to Philip Welch, to my brother Jonathan, and to Ali Sadegh Daghighi (in the comments) for providing some of the examples, and to Timothy Gowers for some improvements.

Please post comments or send me email if hints are desired.

A Mathematician's Year in Japan, by Joel David Hamkins, available on Amazon Kindle Books