Historians everywhere are shocked by the recent discovery that many of our greatest thinkers and poets had first expressed their thoughts and ideas in the language of first-order predicate logic, and sometimes modal logic, rather than in natural language. Some early indications of this were revealed in the pioneering historical research of Henle, Garfield and Tymoczko, in their work Sweet Reason:
We now know that the phenomenon is widespread! As shown below, virtually all of our cultural leaders have first expressed themselves in the language of first-order predicate logic, before having been compromised by translations into the vernacular.
$\neg\lozenge\neg\exists s\ G(i,s)$
$(\exists x\ x=i)\vee\neg(\exists x\ x=i)$
$\left(\strut\neg\exists t\ \exists d\ \strut D(d)\wedge F(d)\wedge S_t(i,d)\right)\wedge\left(\strut\neg\exists t\ w\in_t \text{Ro}\right)\wedge\left(\strut \text{Ru}(i,y)\to \lozenge\text{C}(y,i,qb)\wedge \text{Ru}(i)\wedge\text{Ru}(i)\wedge\text{Ru}(i)\wedge\text{Ru}(i)\right)$
$\exists!t\ T(t) \wedge \forall t\ (T(t)\to G(t))$
$\forall b\ \left(\strut G(b)\wedge B(b)\to \exists x\ (D(b,x)\wedge F(x))\right)$
$(\exists!w\ W_1(w)\wedge W_2(w)), \ \ \exists w\ W_1(w)\wedge W_2(w)\wedge S(y,w)$?
$\exists s\ Y(s)\wedge S(s)\wedge \forall x\ L(x,s)$
$\exists p\ \left[\forall c\ (c\neq p\to G(c))\right]\wedge\neg G(p)$
$\exists l\ \left[L(l)\wedge \Box_l\left({}^\ulcorner\,\forall g\ \text{Gl}(g)\to \text{Gd}(g){}^\urcorner\right)\wedge\exists s\ \left(SH(s)\wedge B(l,s)\right)\right]$
$(\forall p\in P\ \exists c\in\text{Ch}\ c\in p)\wedge(\forall g\in G\ \exists c\in\text{Cr}\ c\in g)$
$\forall x (F(w,x)\leftrightarrow x=F)$
$B\wedge \forall x\ \left[S(x)\wedge T(x)\to \exists!w\ W(w)\wedge\text{Gy}(x,w)\wedge\text{Gi}(x,w)\right]$
$\exists!x\ D(x)\wedge D(\ {}^\ulcorner D(i){}^\urcorner\ )$
$\forall f\ \forall g\ \left(\strut H(f)\wedge H(g)\to f\sim g\right)\wedge\forall f\ \forall g\ \left(\strut\neg H(f)\wedge \neg H(g)\to \neg\ f\sim g\right)$
$\exists w\ \left(\strut O(w)\wedge W(w)\wedge\exists s\ (S(s)\wedge L(w,s))\right)$
$C(i)\to \exists x\ x=i$
$\neg\neg\left(\strut H(y)\wedge D(y)\right)$
$\neg (d\in K)\wedge\neg (t\in K)$
$W(i,y)\wedge N(i,y)\wedge\neg\neg\lozenge L(i,y)\wedge \left(\strut \neg\ \frac23<0\to\neg S(y)\right)$
$\lozenge \text{CL}(i)\wedge\lozenge C(i)\wedge \lozenge (\exists x\ x=i)\wedge B(i)$
$\forall x\ K_x({}^\ulcorner \forall m\ \left[M(m)\wedge S(m)\wedge F(m)\to\Box\ \exists w\ M(m,w)\right]{}^\urcorner)$
$\forall e\forall h\ \left(\strut G(e)\wedge E(e)\wedge H(h)\to \neg L(i,e,h)\right)$
$\forall p\ \Box\text{St}(p)$
$\lozenge^w_i\ \forall g\in G\ \lozenge (g\in C)$
$\forall m\ (a\leq_C m)$
$\forall t\ (p\geq t)\wedge \forall t\ (p\leq t)$
$\forall x\ (F(x)\iff x=h)$
$(\forall x\ \forall y\ x=y)\wedge(\exists x\ \exists y ([\![x=x]\!]>[\![y=y]\!]))$
$\forall p\ \left(\strut\neg W(p)\to \neg S(p)\right)$
$\exists x\Box\Box x\wedge \exists x\Box\neg\Box x\wedge\exists x\neg\Box\neg\Box x$
$\forall p \left(\strut E(p)\to \forall h\in H\ A(p,h)\right)$
Dear readers, in order to assist with this important historical work, please provide translations into ordinary English in the comment section below of any or all of the assertions listed above. We are interested to make sure that all our assertions and translations are accurate.
In addition, any readers who have any knowledge of additional instances of famous quotations that were actually first made in the language of first-order predicate logic (or similar) are encouraged to post comments below detailing their knowledge. I will endeavor to add such additional examples to the list.
Thanks to Philip Welch, to my brother Jonathan, and to Ali Sadegh Daghighi (in the comments) for providing some of the examples, and to Timothy Gowers for some improvements.
Please post comments or send me email if hints are desired.