The implicitly constructible universe

  • M. J.~Groszek and J. D. Hamkins, “The implicitly constructible universe.” (manuscript under review)  
    @ARTICLE{GrozekHamkins:The-implicitly-constructible-universe,
    author = {Marcia J.~Groszek and Joel David Hamkins},
    title = {The implicitly constructible universe},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    abstract = {},
    keywords = {},
    source = {},
    doi = {},
    eprint = {1702.07947},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/the-implicitly-constructible-universe},
    }

Abstract. We answer several questions posed by Hamkins and Leahy concerning the implicitly constructible universe $\newcommand\Imp{\text{Imp}}\Imp$, which they introduced in their paper, Algebraicity and implicit definability in set theory. Specifically, we show that it is relatively consistent with ZFC that $\Imp \models \neg \text{CH}$, that $\Imp \neq \text{HOD}$, and that $\Imp \models V \neq \Imp$, or in other words, that $(\Imp)^{\Imp} \neq \Imp$.

Ehrenfeucht's lemma in set theory

  • G. Fuchs, V. Gitman, and J. D. Hamkins, “Ehrenfeucht’s lemma in set theory,” to appear in Notre Dame Journal of Formal Logic.  
    @ARTICLE{FuchsGitmanHamkins:EhrenfeuchtsLemmaInSetTheory,
    author = {Gunter Fuchs and Victoria Gitman and Joel David Hamkins},
    title = {Ehrenfeucht's lemma in set theory},
    journal = {to appear in Notre Dame Journal of Formal Logic},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    eprint = {1501.01918},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    note = {},
    url = {http://jdh.hamkins.org/ehrenfeuchts-lemma-in-set-theory},
    abstract = {},
    keywords = {},
    source = {},
    }

This is joint work with Gunter Fuchs and Victoria Gitman. $\newcommand\HOD{\text{HOD}}\newcommand\Ehrenfeucht{\text{EL}}$

Abstract. Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, then they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying $V=\HOD$. We show that the lemma can fail, however, in models of set theory with $V\neq\HOD$, and it necessarily fails in the forcing extension to add a generic Cohen real. We go on to formulate a scheme of natural parametric generalizations of Ehrenfeucht’s lemma, namely, the principles of the form $\Ehrenfeucht(A,P,Q)$, which asserts that whenever an object $b$ is definable in $M$ from some $a\in A$ using parameters in $P$, with $b\neq a$, then the types of $a$ and $b$ over $Q$ in $M$ are different. We also consider various analogues of Ehrenfeucht’s lemma obtained by using algebraicity in place of definability, where a set $b$ is \emph{algebraic} in $a$ if it is a member of a finite set definable from $a$ (as in J. D. Hamkins and C. Leahy, Algebraicity and implicit definability in set theory). Ehrenfeucht’s lemma holds for the ordinal-algebraic sets, we prove, if and only if the ordinal-algebraic and ordinal-definable sets coincide. Using similar analysis, we answer two open questions posed in my paper with Leahy, by showing that (i) algebraicity and definability need not coincide in models of set theory and (ii) the internal and external notions of being ordinal algebraic need not coincide.

Algebraicity and implicit definability in set theory

  • J. D. Hamkins and C. Leahy, “Algebraicity and Implicit Definability in Set Theory,” Notre Dame J. Formal Logic, vol. 57, iss. 3, pp. 431-439, 2016.  
    @article{HamkinsLeahy2016:AlgebraicityAndImplicitDefinabilityInSetTheory,
    author = "Hamkins, Joel David and Leahy, Cole",
    doi = "10.1215/00294527-3542326",
    fjournal = "Notre Dame Journal of Formal Logic",
    journal = "Notre Dame J. Formal Logic",
    number = "3",
    pages = "431--439",
    publisher = "Duke University Press",
    title = "Algebraicity and Implicit Definability in Set Theory",
    volume = "57",
    year = "2016",
    url = {http://jdh.hamkins.org/algebraicity-and-implicit-definability},
    eprint = {1305.5953},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    ISSN = {0029-4527},
    MRCLASS = {03E47 (03C55)},
    MRNUMBER = {3521491},
    URL = {http://dx.doi.org/10.1215/00294527-3542326},
    }

We aim in this article to analyze the effect of replacing several natural uses of definability in set theory by the weaker model-theoretic notion of algebraicity and its companion concept of implicit definability. In place of the class HOD of hereditarily ordinal definable sets, for example, we consider the class HOA of hereditarily ordinal-algebraic sets. In place of the pointwise definable models of set theory, we examine its (pointwise) algebraic models. And in place of Gödel’s constructible universe L, obtained by iterating the definable power set operation, we introduce the implicitly constructible universe Imp, obtained by iterating the algebraic or implicitly definable power set operation. In each case we investigate how the change from definability to algebraicity affects the nature of the resulting concept. We are especially intrigued by Imp, for it is a new canonical inner model of ZF whose subtler properties are just now coming to light. Open questions about Imp abound.

Before proceeding further, let us review the basic definability definitions. In the model theory of first-order logic, an element $a$ is definable in a structure $M$ if it is the unique object in $M$ satisfying some first-order property $\varphi$ there, that is, if $M\models\varphi[b]$ just in case $b=a$. More generally, an element $a$ is algebraic in $M$ if it has a property $\varphi$ exhibited by only finitely many objects in $M$, so that $\{b\in M \mid M\models\varphi[b]\}$ is a finite set containing $a$. For each class $P\subset M$ we can similarly define what it means for an element to be $P$-definable or $P$-algebraic by allowing the formula $\varphi$ to have parameters from $P$.

In the second-order context, a subset or class $A\subset M^n$ is said to be definable in $M$, if $A=\{\vec a\in M\mid M\models\varphi[\vec a]\}$ for some first-order formula $\varphi$. In particular, $A$ is the unique class in $M^n$ with $\langle M,A\rangle\models\forall \vec x\, [\varphi(\vec x)\iff A(\vec x)]$, in the language where we have added a predicate symbol for $A$. Generalizing this condition, we say that a class $A\subset M^n$ is implicitly definable in $M$ if there is a first-order formula $\psi(A)$ in the expanded language, not necessarily of the form $\forall \vec x\, [\varphi(\vec x)\iff A(\vec x)]$, such that $A$ is unique such that $\langle M,A\rangle\models\psi(A)$. Thus, every (explicitly) definable class is also implicitly definable, but the converse can fail. Even more generally, we say that a class $A\subset M^n$ is algebraic in $M$ if there is a first-order formula $\psi(A)$ in the expanded language such that $\langle M,A\rangle\models\psi(A)$ and there are only finitely many $B\subset M^n$ for which $\langle M,B\rangle\models\psi(B)$. Allowing parameters from a fixed class $P\subset M$ to appear in $\psi$ yields the notions of $P$-definability, implicit $P$-definability, and $P$-algebraicity in $M$. Simplifying the terminology, we say that $A$ is definable, implicitly definable, or algebraic over (rather than in) $M$ if it is $M$-definable, implicitly $M$-definable, or $M$-algebraic in $M$, respectively. A natural generalization of these concepts arises by allowing second-order quantifiers to appear in $\psi$. Thus we may speak of a class $A$ as second-order definable, implicitly second-order definable, or second-order algebraic. Further generalizations are of course possible by allowing $\psi$ to use resources from other strong logics.

The main theorems of the paper are:

Theorem. The class of hereditarily ordinal algebraic sets is the same as the class of hereditarily ordinal definable sets: $$\text{HOA}=\text{HOD}.$$

Theorem. Every pointwise algebraic model of ZF is a pointwise definable model of ZFC+V=HOD.

In the latter part of the paper, we introduce what we view as the natural algebraic analogue of the constructible universe, namely, the implicitly constructible universe, denoted Imp, and built as follows:

$$\text{Imp}_0 = \emptyset$$

$$\text{Imp}_{\alpha + 1} = P_{imp}(\text{Imp}_\alpha)$$

$$\text{Imp}_\lambda = \bigcup_{\alpha < \lambda} \text{Imp}_\alpha, \text{ for limit }\lambda$$

$$\text{Imp} = \bigcup_\alpha \text{Imp}_\alpha.$$

Theorem.  Imp is an inner model of ZF with $L\subset\text{Imp}\subset\text{HOD}$.

Theorem.  It is relatively consistent with ZFC that $\text{Imp}\neq L$.

Theorem. In any set-forcing extension $L[G]$ of $L$, there is a further extension $L[G][H]$ with $\text{gImp}^{L[G][H]}=\text{Imp}^{L[G][H]}=L$.

Open questions about Imp abound. Can $\text{Imp}^{\text{Imp}}$ differ from $\text{Imp}$? Does $\text{Imp}$ satisfy the axiom of choice? Can $\text{Imp}$ have measurable cardinals? Must $0^\sharp$ be in $\text{Imp}$ when it exists? (An affirmative answer arose in conversation with Menachem Magidor and Gunter Fuchs, and we hope that $\text{Imp}$ will subsume further large cardinal features. We anticipate a future article on the implicitly constructible universe.)  Which large cardinals are absolute to $\text{Imp}$? Does $\text{Imp}$ have fine structure? Should we hope for any condensation-like principle? Can CH or GCH fail in $\text{Imp}$? Can reals be added at uncountable construction stages of $\text{Imp}$? Can we separate $\text{Imp}$ from HOD? How much can we control $\text{Imp}$ by forcing? Can we put arbitrary sets into the $\text{Imp}$ of a suitable forcing extension? What can be said about the universe $\text{Imp}(\mathbb{R})$ of sets implicitly constructible relative to $\mathbb{R}$ and, more generally, about $\text{Imp}(X)$ for other sets $X$? Here we hope at least to have aroused interest in these questions.

This article arose from a question posed on MathOverflow by my co-author Cole Leahy and our subsequent engagement with it.

Algebraicity and implicit definability in set theory, CUNY, May 2013

This is a talk May 10, 2013 for the CUNY Set Theory Seminar.

Abstract.  An element a is definable in a model M if it is the unique object in M satisfying some first-order property. It is algebraic, in contrast, if it is amongst at most finitely many objects satisfying some first-order property φ, that is, if { b | M satisfies φ[b] } is a finite set containing a. In this talk, I aim to consider the situation that arises when one replaces the use of definability in several parts of set theory with the weaker concept of algebraicity. For example, in place of the class HOD of all hereditarily ordinal-definable sets, I should like to consider the class HOA of all hereditarily ordinal algebraic sets. How do these two classes relate? In place of the study of pointwise definable models of set theory, I should like to consider the pointwise algebraic models of set theory. Are these the same? In place of the constructible universe L, I should like to consider the inner model arising from iterating the algebraic (or implicit) power set operation rather than the definable power set operation. The result is a highly interesting new inner model of ZFC, denoted Imp, whose properties are only now coming to light. Is Imp the same as L? Is it absolute? I shall answer all these questions at the talk, but many others remain open.

This is joint work with Cole Leahy (MIT).

NYlogic abstract | MathOverflow post