Set-theoretic blockchains

  • M. E. Habič, J. D. Hamkins, L. D. Klausner, J. Verner, and K. J. Williams, “Set-theoretic blockchains,” ArXiv e-prints, pp. 1-23, 2018. (under review)  
    @ARTICLE{HabicHamkinsKlausnerVernerWilliams2018:Set-theoretic-blockchains,
    author = {Miha E. Habič and Joel David Hamkins and Lukas Daniel Klausner and Jonathan Verner and Kameryn J. Williams},
    title = {Set-theoretic blockchains},
    journal = {ArXiv e-prints},
    year = {2018},
    volume = {},
    number = {},
    pages = {1--23},
    month = {},
    note = {under review},
    abstract = {},
    eprint = {1808.01509},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    keywords = {under-review},
    source = {},
    doi = {},
    url = {http://wp.me/p5M0LV-1M8},
    }

Abstract. Given a countable model of set theory, we study the structure of its generic multiverse, the collection of its forcing extensions and ground models, ordered by inclusion. Mostowski showed that any finite poset embeds into the generic multiverse while preserving the nonexistence of upper bounds. We obtain several improvements of his result, using what we call the blockchain construction to build generic objects with varying degrees of mutual genericity. The method accommodates certain infinite posets, and we can realize these embeddings via a wide variety of forcing notions, while providing control over lower bounds as well. We also give a generalization to class forcing in the context of second-order set theory, and exhibit some further structure in the generic multiverse, such as the existence of exact pairs.

Miha E. Habič, PhD 2017, CUNY Graduate Center

Miha E. Habič successfully defended his dissertation under my supervision at the CUNY Graduate Center on April 7th, 2017, earning his Ph.D. degree in May 2017.

It was truly a pleasure to work with Miha, who is an outstanding young mathematician with enormous promise. I shall look forward to seeing his continuing work.

Miha Habic

Cantor’s paradise | MathOverflow | MathSciNet  | NY Logic profilear$\chi$iv

Miha E. Habič, “Joint Laver diamonds and grounded forcing axioms,”  Ph.D. dissertation for The Graduate Center of the City University of New York, May, 2017 (arxiv:1705.04422).

Abstract. In chapter 1 a notion of independence for diamonds and Laver diamonds is investigated. A sequence of Laver diamonds for $\kappa$ is joint if for any sequence of targets there is a single elementary embedding $j$ with critical point $\kappa$ such that each Laver diamond guesses its respective target via $j$. In the case of measurable cardinals (with similar results holding for (partially) supercompact cardinals) I show that a single Laver diamond for $\kappa$ yields a joint sequence of length $\kappa$, and I give strict separation results for all larger lengths of joint sequences. Even though the principles get strictly stronger in terms of direct implication, I show that they are all equiconsistent. This is contrasted with the case of $\theta$-strong cardinals where, for certain $\theta$, the existence of even the shortest joint Laver sequences carries nontrivial consistency strength. I also formulate a notion of jointness for ordinary $\diamondsuit_\kappa$-sequences on any regular cardinal $\kappa$. The main result concerning these shows that there is no separation according to length and a single $\diamondsuit_\kappa$-sequence yields joint families of all possible lengths.

 

In chapter 2 the notion of a grounded forcing axiom is introduced and explored in the case of Martin’s axiom. This grounded Martin’s axiom, a weakening of the usual axiom, states that the universe is a ccc forcing extension of some inner model and the restriction of Martin’s axiom to the posets coming from that ground model holds. I place the new axiom in the hierarchy of fragments of Martin’s axiom and examine its effects on the cardinal characteristics of the continuum. I also show that the grounded version is quite a bit more robust under mild forcing than Martin’s axiom itself.

Miha Habic defenseMiha will shortly begin a post-doctoral research position at Charles University in Prague.