Infinite time Turing machines with only one tape

[bibtex key=HamkinsSeabold2001:OneTape]

Infinite time Turing machines with only one tape are in many respects fully as powerful as their multi-tape cousins. In particular, the two models of machine give rise to the same class of decidable sets, the same degree structure and, at least for functions $f:\mathbb{R}\to\mathbb{N}$, the same class of computable functions. Nevertheless, there are infinite time computable functions $f:\mathbb{R}\to\mathbb{R}$ that are not one-tape computable, and so the two models of supertask computation are not equivalent. Surprisingly, the class of one-tape computable functions is not closed under composition; but closing it under composition yields the full class of all infinite time computable functions. Finally, every ordinal which is clockable by an infinite time Turing machine is clockable by a one-tape machine, except certain isolated ordinals that end gaps in the clockable ordinals.

The wholeness axioms and $V=\rm HOD$

[bibtex key=Hamkins2001:WholenessAxiom]

The Wholeness Axioms, proposed by Paul Corazza, axiomatize the existence of an elementary embedding $j:V\to V$. Formalized by augmenting the usual language of set theory with an additional unary function symbol j to represent the embedding, they avoid the Kunen inconsistency by restricting the base theory ZFC to the usual language of set theory. Thus, under the Wholeness Axioms one cannot appeal to the Replacement Axiom in the language with j as Kunen does in his famous inconsistency proof. Indeed, it is easy to see that the Wholeness Axioms have a consistency strength strictly below the existence of an $I_3$ cardinal. In this paper, I prove that if the Wholeness Axiom $WA_0$ is itself consistent, then it is consistent with $V=HOD$. A consequence of the proof is that the various Wholeness Axioms $WA_n$ are not all equivalent. Furthermore, the theory $ZFC+WA_0$ is finitely axiomatizable.

Infinite time Turing machines

[bibtex key=HamkinsLewis2000:InfiniteTimeTM]

This is the seminal paper introducing infinite time Turing machines.

We extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and decidability on the reals. The resulting computability theory leads to a notion of computation on the reals and concepts of decidability and semi-decidability for sets of reals as well as individual reals. Every $\Pi^1_1$ set, for example, is decidable by such machines, and the semi-decidable sets form a portion of the $\Delta^1_2$ sets. Our oracle concept leads to a notion of relative computability for reals and sets of reals and a rich degree structure, stratified by two natural jump operators.

The lottery preparation

[bibtex key=Hamkins2000:LotteryPreparation]

The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal $\kappa$, for example, becomes fully indestructible by $\kappa$-directed closed forcing; a strong cardinal $\kappa$ becomes indestructible by less-than-or-equal-$\kappa$-strategically closed forcing; and a strongly compact cardinal $\kappa$ becomes indestructible by, among others, the forcing to add a Cohen subset to $\kappa$, the forcing to shoot a club $C$ in $\kappa$ which avoids the measurable cardinals and the forcing to add various long Prikry sequences. The lottery preparation works best when performed after fast function forcing, which adds a new completely general kind of Laver function for any large cardinal, thereby freeing the Laver function concept from the supercompact cardinal context.

Changing the heights of automorphism towers

[bibtex key=HamkinsThomas2000:ChangingHeights]

If $G$ is a centreless group, then $\tau(G)$ denotes the height of the automorphism tower of $G$. We prove that it is consistent that for every cardinal $\lambda$ and every ordinal $\alpha < \lambda$, there exists a centreless group $G$ such that (a) $\tau(G) = \alpha$; and (b) if $\beta$ is any ordinal such that $1 \leq \beta < \lambda$, then there exists a notion of forcing $P$, which preserves cofinalities and cardinalities, such that $\tau(G) = \beta$ in the corresponding generic extension $V^{P}$.

Small forcing creates neither strong nor Woodin cardinals

[bibtex key=HamkinsWoodin2000:SmallForcing]

After small forcing, almost every strongness embedding is the lift of a strongness embedding in the ground model. Consequently, small forcing creates neither strong nor Woodin cardinals.

With infinite utility, more needn’t be better

[bibtex key=HamkinsMontero2000:MoreBetter]

Barbara Gail Montero

Utilitarianism in infinite worlds

[bibtex key=HamkinsMontero2000:InfiniteWorlds]

Recently in the philosophical literature there has been some effort made to understand the proper application of the theory of utilitarianism to worlds in which there are infinitely many bearers of utility. Here, we point out that one of the best, most inclusive principles proposed to date contradicts fundamental utilitarian ideas, such as the idea that adding more utility makes a better world.

Barbara Gail Montero

Book review of The Higher Infinite, Akihiro Kanamori

[bibtex key=Hamkins2000:BookReviewKanamori]

Akihiro Kanamori. The Higher Infinite.    Large cardinals, stealing upwards through the clouds of imagined limitation like the steel skyscrapers of a ever-growing set-theoretic skyline, reach towards the stratosphere of Cantor’s absolute. In this century we have axiomatized larger and larger notions of infinity, and as we live amongst these giants, the formerly tall now seem small. Weakly inaccessible cardinals, for example, first considered by Hausdorff as a natural transfinite limit of set-theoretic operations, now occupy a floor at the entryway to the large cardinal hierarchy. In time over the past century we had Mahlo cardinals, strongly inaccessible cardinals, measurable cardinals, indescribable cardinals, weakly-compact cardinals, strongly-compact cardinals, super-compact cardinals, huge cardinals, almost huge cardinals, superhuge cardinals, and so on. And while when it comes to naming these enormous magnitudes, words have perhaps failed us, the mathematics is perfectly precise and fascinating.

Professor Kanamori has written—beautifully so—the book we large cardinal set-theorists have been lacking, a book spanning the possibilities from inaccessible to superhuge cardinals and beyond, a book full of historical insight, clear writing, interesting theorems and elegant proofs. This book is destined to become, if it has not already become, the standard reference in its field.

Finding that “a genetic account through historical progression…provides the most coherent exposition of the mathematics and holds the key to any epistemological concerns,” (p. XI) Kanamori weaves a historical perspective into the mathematics, deepening our understanding and appreciation of it. He sprinkles the text with quotations of Gödel and others, giving their mathematical-philosophical views on the mathematical developments. The introduction stands alone as a non-technical essay introducing the entire subject. From there, Kanamori begins with the smaller large cardinals, inaccessible and Mahlo cardinals, and then moves in time up to the strongest hypotheses.

So let me begin to explain a little about large cardinals. A cardinal $\kappa$ is inaccessible when it cannot be constructed from smaller cardinals, so that first, it is not the supremum of fewer than $\kappa$ many cardinals each of size less than $\kappa$ (as, for example, $\aleph_\omega=\sup_n\aleph_n$ is), and second, it cannot be reached by the power set operation in the sense that whenever $\delta$ is smaller than $\kappa$ then $2^\delta$ is also smaller than $\kappa$. It is relatively straightforward to show that if $\kappa$ is inaccessible, then $V_\kappa$ is a model of ZFC. In particular, if $\kappa$ is the least inaccessible cardinal, then $V_\kappa$ will be a model of ZFC in which there are no inaccessible cardinals. So it is relatively consistent with ZFC that there are no large cardinals at all. Furthermore, since the mere existence of an inaccessible cardinal provides a full model of ZFC, we cannot hope even for a relative consistency result of the form “If ZFC is consistent, then so is ZFC $+$ there is an inaccessible cardinal” (in the manner of results proved for the Continuum Hypothesis and the Axiom of Choice), for then the theory “ZFC $+$ there is an inaccessible cardinal” would imply its own consistency, contrary to Gödel’s Incompleteness Theorem. In short, the consistency strength of the existence of an inaccessible cardinal is greater than that of ZFC alone. At first glance, then, the logical status of the existence of even the smallest of the large cardinals is a bit startling: we can’t prove they exist; it is consistent that they don’t exist; and we can prove that we cannot prove that their existence is relatively consistent. What, then, is the point of them?

The point is that such a transcendence over ZFC in consistency strength is exactly what we want and what we need. In the decades since the invention of Cohen’s forcing technique, set theorists have set marching an infinite parade of independence results; indeed, it often seems as though almost all the interesting set-theoretic questions are independent of our ZFC axioms. We all know now that the cardinality of the set $\mathbb{R}$ of reals can be $\aleph_1$ or $\aleph_2$ or $\aleph_{1776}$ or $\aleph_{\omega+1776}$ or any cardinal you like within reason, and this unfinished nature of ZFC when it comes to basic set theoretic questions is the norm. We have learned in this sense that ZFC is a weak theory. The large cardinal axioms provide strengthenings of it, strengthenings which are fundamentally different from the strengthenings of ZFC provided by the Continuum Hypothesis, the Generalized Continuum Hypothesis, Souslin’s Hypothesis, Martin’s Axiom and many of the other principles that we know to properly extend ZFC, in that large cardinals transcend even the consistency strength of ZFC. The large cardinal hierarchy, therefore, in addition to its intrinsic mathematical interest, provides a natural structure which can be used to gauge the consistency strength of general mathematical propositions.

Let me give one example. Almost all mathematicians are familiar with Vitali’s construction of a non-Lebesgue measurable set of reals and furthermore believe that the construction makes an essential use of the Axiom of Choice AC. But what does this mean exactly? The impossibility of removing AC from the Vitali construction is equivalent to the consistency (without AC) that every set of reals is Lebesgue measurable. Now of course we need some choice principle to develop a satisfactory theory of Lebesgue measure at all, so let us keep in the base theory the principle of Dependent Choices DC, which allows us to make countably many choices in succession. Thus, we are led to consider the consistency of the theory $T=$ “ZF + DC + every set of reals is Lebesgue measurable”. Solovay [65] proved that if ZFC is consistent with the existence of an inaccessible cardinal, then $T$ is consistent; that is, if inaccessible cardinals are consistent, then we are perfectly correct in believing that you cannot remove AC from Vitali’s construction. Since most mathematicians already believed this conclusion, Solovay’s use of an inaccessible cardinal was widely seen as a defect in his argument. But Shelah [84] exploded this criticism by proving conversely that if $T$ is consistent, then so is the existence of an inaccessible cardinal. That is, the two theories are equiconsistent, and we should be exactly as confident in the consistency of inaccessible cardinals as we are in our belief that Vitali’s use of AC is essential.

After the beginnings, Kanamori moves swiftly through a chapter on partition properties, weak compactness, indiscernibles and $0^\sharp$, before moving into a longer chapter on forcing and sets of reals, in which he introduces forcing, Lebesgue measurability and topics from descriptive set theory. Next, in Chapter Four, he approaches measurability from the direction of saturated ideals, including such topics as Prikry forcing, iterated ultrapower embeddings, the inner model $L[\mu]$, $0^\dagger$ and, curiously, a chess problem for the solution of which he will pay a small prize. The strongest hypotheses appear in Chapter five along with the combinatorial backup needed to support them. Kanamori concludes in Chapter six with the Axiom of Determinacy, giving such connections to large cardinals as can be easily given, and, whetting the appetite of the eager student, surveying the more recent, more difficult, and more amazing results.

Kanamori’s book has already been translated into Japanese by S. Fuchino, and judging by the graduate students I saw last year in Japan pouring over it, the translation seems destined to create a new generation of large cardinal set theorists in Japan.

I do have one reservation about Kanamori’s book, namely, that he didn’t include much material on the interaction between forcing and large cardinals. Admittedly, this being the focus of much of my own work, I harbor some bias in its favor, but the topics of forcing and large cardinals are two major set theoretic research areas, and the intersection is rich. It would have been relatively easy for Kanamori to include a presentation, for example, of the landmark Laver preparation, by which any supercompact cardinal $\kappa$ becomes indestructible by $\kappa$-directed closed forcing. And Laver’s result is really just the beginning of the investigation of how large cardinals are affected by forcing. I trust that much of this work will appear in volume II.

My overall evaluation is entirely positive, and I recommend the book in the strongest possible terms to anyone with an interest in large cardinals. I can hardly wait for the subsequent volume!

[84] Saharon Shelah, “Can you take Solovay’s inaccessible away?” IJM 48 (1984), 1-47.

[65] Robert M. Solovay, “The measure problem,” NAMS 12 (1965), 217.

Gap forcing: generalizing the Lévy-Solovay theorem

[bibtex key=Hamkins99:GapForcingGen]

The landmark Levy-Solovay Theorem limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.

Universal indestructibility

[bibtex key=ApterHamkins99:UniversalIndestructibility]

From a suitable large cardinal hypothesis, we provide a model with a supercompact cardinal in which universal indestructibility holds: every supercompact and partially supercompact cardinal kappa is fully indestructible by kappa-directed closed forcing. Such a state of affairs is impossible with two supercompact cardinals or even with a cardinal which is supercompact beyond a measurable cardinal.

Superdestructibility: a dual to Laver's indestructibility

[bibtex key=HamkinsShelah98:Dual]

After small forcing, any $<\kappa$-closed forcing will destroy the supercompactness, even the strong compactness, of $\kappa$.

Small forcing makes any cardinal superdestructible

[bibtex key=Hamkins98:SmallForcing]

Destruction or preservation as you like it

[bibtex key=Hamkins98:AsYouLikeIt]

The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call exact preservation theorems, I use this new technology to perform a kind of partial Laver preparation, and thereby finely control the class of posets which preserve a supercompact cardinal. Eventually, I prove the ‘As You Like It’ Theorem, which asserts that the class of ${<}\kappa$-directed closed posets which preserve a supercompact cardinal $\kappa$ can be made by forcing to conform with any pre-selected local definition which respects the equivalence of forcing. Along the way I separate completely the levels of the superdestructibility hierarchy, and, in an epilogue, prove that the notions of fragility and superdestructibility are orthogonal — all four combinations are possible.

Every group has a terminating transfinite automorphism tower

[bibtex key=Hamkins98:EveryGroup]

The automorphism tower of a group is obtained by computing its automorphism group, the automorphism group of that group, and so on, iterating transfinitely. Each group maps canonically into the next using inner automorphisms, and so at limit stages one can take a direct limit and continue the iteration. The tower is said to terminate if a fixed point is reached, that is, if a group is reached which is isomorphic to its automorphism group by the natural map. This occurs if a complete group is reached, one which is centerless and has only inner automorphisms. Wielandt [1939] proved the classical result that the automorphism tower of any centerless finite group terminates in finitely many steps. Rae and Roseblade [1970] proved that the automorphism tower of any centerless Cernikov group terminates in finitely many steps. Hulse [1970] proved that the the automorphism tower of any centerless polycyclic group terminates in countably many steps. Simon Thomas [1985] proved that the automorphism tower of any centerless group eventually terminates. In this paper, I remove the centerless assumption, and prove that every group has a terminating transfinite automorphism tower.