This will be a talk for the CUNY Set Theory Seminar on March 10, 2017, 10:00 am in room 6417 at the CUNY Graduate Center.
Abstract. I shall prove various extensions of the Tennenbaum phenomenon to the case of computable quotient presentations of models of arithmetic and set theory. Specifically, no nonstandard model of arithmetic has a computable quotient presentation by a c.e. equivalence relation. No
-sound nonstandard model of arithmetic has a computable quotient presentation by a co-c.e. equivalence relation. No nonstandard model of arithmetic in the language has a computably enumerable quotient presentation by any equivalence relation of any complexity. No model of ZFC or even much weaker set theories has a computable quotient presentation by any equivalence relation of any complexity. And similarly no nonstandard model of finite set theory has a computable quotient presentation. This is joint work with Michał Tomasz Godziszewski.
A computable quotient presentation of a mathematical structure
At the 2016 conference Mathematical Logic and its Applications at the Research Institute for Mathematical Sciences (RIMS) in Kyoto, Bakhadyr Khoussainov outlined a sweeping vision for the use of computable quotient presentations as a fruitful alternative approach to the subject of computable model theory. In his talk (see his slides), he outlined a program of guiding questions and results in this emerging area. Part of this program concerns the investigation, for a fixed equivalence relation
In my talk, I shall engage specifically with two conjectures that Khoussainov had made at the meeting.
Conjecture. (Khoussainov)
- No nonstandard model of arithmetic admits a computable quotient presentation by a computably enumerable equivalence relation on the natural numbers.
- Some nonstandard model of arithmetic admits a computable quotient presentation by a co-c.e.~equivalence relation.
We prove the first conjecture and refute several natural variations of the second conjecture, although a further natural variation, perhaps the central case, remains open. In addition, we consider and settle the natural analogues of the conjectures for models of set theory.