Every countable model of set theory is isomorphic to a submodel of its own constructible universe, Barcelona, December, 2012

This will be a talk for a set theory workshop at the University of Barcelona on December 15, 2012, organized by Joan Bagaria.

Vestíbul Universitat de Barcelona

Abstract. Every countable model of set theory M, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding j:MLM that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random Q-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that LM contains a submodel that is a universal acyclic digraph of rank OrdM. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other.  Indeed, the bi-embeddability classes form a well-ordered chain of length ω1+1.  Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most OrdM; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if M is any nonstandard model of PA, then every countable model of set theory—in particular, every model of ZFC—is isomorphic to a submodel of the hereditarily finite sets HFM of M. Indeed, HFM is universal for all countable acyclic binary relations.

Article | Barcelona research group in set theory

Leave a Reply

Your email address will not be published. Required fields are marked *