Welcome to the Oxford Set Theory Seminar.

We focus on all aspects of set theory and the philosophy of set theory. Topics will include forcing, large cardinals, models of set theory, set theory as a foundation, set-theoretic potentialism, cardinal characteristics of the continuum, second-order set theory and class theory, and much more.

Technical topics are completely fine. Speakers are encouraged to pick set-theoretic topics having some philosophical angle or aspect, although it is expected that this might sometimes be a background consideration, while at other times it will be a primary focus.

The seminar will last 60-90 minutes, and are generally held on Wednesdays 4:00 – 5:30 UK time. Speakers are requested to prepare a one hour talk, and we expect a lively discussion with questions.

## Michaelmas Term 2020

This term, we are coordinating the seminar in collaboration with Bristol, and so let me announce the joint meetings of the Oxford Set Theory Seminar and the Bristol Logic and Set Theory seminar. Organized by myself, Samuel Adam-Day, and Philip Welch.

For the Zoom access code (which is the same as last term), contact Samuel Adam-Day me@samadamday.com.

Talks are held on Wednesdays 4:00 – 5:30 UK time.

# 21 October 2020 4 pm UK

## Andreas Blass

### University of Michigan

# Ultrafilters on omega versus forcing

**Abstract.** I plan to survey known facts and open questions about ultrafilters on omega generating (or not generating) ultrafilters in forcing extensions.

# 4 November 4 pm UK

## Mirna Džamonja

### Institut for History and Philosophy of Sciences and Techniques, CNRS & Université Panthéon Sorbonne, Paris and Institute of Mathematics, Czech Academy of Sciences, Prague

# On wide Aronszajn trees

Aronszajn trees are a staple of set theory, but there are applications where the requirement of all levels being countable is of no importance. This is the case in set-theoretic model theory, where trees of height and size ω1 but with no uncountable branches play an important role by being clocks of Ehrenfeucht–Fraïssé games that measure similarity of model of size ℵ1. We call such trees wide Aronszajn. In this context one can also compare trees T and T’ by saying that T weakly embeds into T’ if there is a function f that map T into T’ while preserving the strict order <_T. This order translates into the comparison of winning strategies for the isomorphism player, where any winning strategy for T’ translates into a winning strategy for T’. Hence it is natural to ask if there is a largest such tree, or as we would say, a universal tree for the class of wood Aronszajn trees with weak embeddings. It was known that there is no such a tree under CH, but in 1994 Mekler and Väänanen conjectured that there would be under MA(ω1).

In our upcoming JSL paper with Saharon Shelah we prove that this is not the case: under MA(ω1) there is no universal wide Aronszajn tree.

The talk will discuss that paper. The paper is available on the arxiv and on line at JSL in the preproof version doi: 10.1017/jsl.2020.42.

# 18 November 4 pm UK

## Gabriel Goldberg

### Harvard University

# Even ordinals and the Kunen inconsistency

Abstract. The Burali-Forti paradox suggests that the transfinite cardinals “go on forever,” surpassing any conceivable bound one might try to place on them. The traditional Zermelo-Frankel axioms for set theory fall into a hierarchy of axiomatic systems formulated by reasserting this intuition in increasingly elaborate ways: the large cardinal hierarchy*. *Or so the story goes. A serious problem for this already naive account of large cardinal set theory is the Kunen inconsistency theorem, which seems to impose an upper bound on the extent of the large cardinal hierarchy itself. If one drops the Axiom of Choice, Kunen’s proof breaks down and a new hierarchy of choiceless large cardinal axioms emerges. These axioms, if consistent, represent a challenge for those “maximalist” foundational stances that take for granted both large cardinal axioms and the Axiom of Choice. This talk concerns some recent advances in our understanding of the weakest of the choiceless large cardinal axioms and the prospect, as yet unrealized, of establishing their consistency and reconciling them with the Axiom of Choice.

# 2 December 4 pm UK

## Kameryn J Williams

### University of Hawai’i at Mānoa

**The geology of inner mantles**

An inner model is a *ground* if V is a set forcing extension of it. The intersection of the grounds is the *mantle*, an inner model of ZFC which enjoys many nice properties. Fuchs, Hamkins, and Reitz showed that the mantle is highly malleable. Namely, they showed that every model of set theory is the mantle of a bigger, better universe of sets. This then raises the possibility of iterating the definition of the mantle—the mantle, the mantle of the mantle, and so on, taking intersections at limit stages—to obtain even deeper inner models. Let’s call the inner models in this sequence the *inner mantles*.

In this talk I will present some results, both positive and negative, about the sequence of inner mantles, answering some questions of Fuchs, Hamkins, and Reitz, results which are analogues of classic results about the sequence of iterated HODs. On the positive side: (Joint with Reitz) Every model of set theory is the eta-th inner mantle of a class forcing extension for any ordinal eta in the model. On the negative side: The sequence of inner mantles may fail to carry through at limit stages. Specifically, it is consistent that the omega-th inner mantle not be a definable class and it is consistent that it be a definable inner model of ¬AC.

## Trinity Term 2020

In Trinity term 2020, the seminar is organized by myself and Samuel Adam-Day. In light of the corona virus situation, we will be meeting online via Zoom for the foreseeable future.

For the Zoom access code, contact Samuel Adam-Day me@samadamday.com.

## 6 May 2020, 4 pm UK

Victoria Gitman, City University of New York

**Elementary embeddings and smaller large cardinals**

**Abstract** A common theme in the definitions of larger large cardinals is the existence of elementary embeddings from the universe into an inner model. In contrast, smaller large cardinals, such as weakly compact and Ramsey cardinals, are usually characterized by their combinatorial properties such as existence of large homogeneous sets for colorings. It turns out that many familiar smaller large cardinals have elegant elementary embedding characterizations. The embeddings here are correspondingly ‘small’; they are between transitive set models of set theory, usually the size of the large cardinal in question. The study of these elementary embeddings has led us to isolate certain important properties via which we have defined robust hierarchies of large cardinals below a measurable cardinal. In this talk, I will introduce these types of elementary embeddings and discuss the large cardinal hierarchies that have come out of the analysis of their properties. The more recent results in this area are a joint work with Philipp Schlicht.

## 20 May 2020, 4 pm

Joel David Hamkins, Oxford

## Bi-interpretation of weak set theories

**Abstract.** Set theory exhibits a truly robust mutual interpretability phenomenon: in any model of one set theory we can define models of diverse other set theories and vice versa. In any model of ZFC, we can define models of ZFC + GCH and also of ZFC + ¬CH and so on in hundreds of cases. And yet, it turns out, in no instance do these mutual interpretations rise to the level of bi-interpretation. Ali Enayat proved that distinct theories extending ZF are never bi-interpretable, and models of ZF are bi-interpretable only when they are isomorphic. So there is no nontrivial bi-interpretation phenomenon in set theory at the level of ZF or above. Nevertheless, for natural weaker set theories, we prove, including ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.

## 27 May 2020, 4 pm

Ali Enayat, Gothenberg

## Leibnizian and anti-Leibnizian motifs in set theory

**Abstract.** Leibniz’s principle of identity of indiscernibles at first sight appears completely unrelated to set theory, but Mycielski (1995) formulated a set-theoretic axiom nowadays referred to as LM (for Leibniz-Mycielski) which captures the spirit of Leibniz’s dictum in the following sense: LM holds in a model M of ZF iff M is elementarily equivalent to a model M* in which there is no pair of indiscernibles. LM was further investigated in a 2004 paper of mine, which includes a proof that LM is equivalent to the global form of the Kinna-Wagner selection principle in set theory. On the other hand, one can formulate a strong negation of Leibniz’s principle by first adding a unary predicate I(x) to the usual language of set theory, and then augmenting ZF with a scheme that ensures that I(x) describes a proper class of indiscernibles, thus giving rise to an extension ZFI of ZF that I showed (2005) to be intimately related to Mahlo cardinals of finite order. In this talk I will give an expository account of the above and related results that attest to a lively interaction between set theory and Leibniz’s principle of identity of indiscernibles.

## 17 June 2020, 4 pm

Corey Bacal Switzer, City University of New York

## Some Set Theory of Kaufmann Models

**Abstract.**

A Kaufmann model is an $\omega_1$-like, recursively saturated, rather classless model of PA. Such models were shown to exist by Kaufmann under the assumption that $\diamondsuit$ holds, and in ZFC by Shelah via an absoluteness argument involving strong logics. They are important in the theory of models of arithmetic notably because they show that many classic results about countable, recursively saturated models of arithmetic cannot be extended to uncountable models. They are also a particularly interesting example of set theoretic incompactness at $\omega_1$, similar to an Aronszajn tree.

In this talk we’ll look at several set theoretic issues relating to this class of models motivated by the seemingly naïve question of whether or not such models can be killed by forcing without collapsing $\omega_1$. Surprisingly the answer to this question turns out to be independent: under $\mathsf{MA}_{\aleph_1}$ no $\omega_1$-preserving forcing can destroy Kaufmann-ness whereas under $\diamondsuit$ there is a Kaufmann model $M$ and a Souslin tree $S$ so that forcing with $S$ adds a satisfaction class to $M$ (thus killing rather classlessness). The techniques involved in these proofs also yield another surprising side of Kaufmann models: it is independent of ZFC whether the class of Kaufmann models can be axiomatized in the logic $L_{\omega_1, \omega}(Q)$ where $Q$ is the quantifier “there exists uncountably many”. This is the logic used in Shelah’s aforementioned result, hence the interest in this level of expressive power.

The seminar talks appear in the compilation of math seminars at https://mathseminars.org/seminar/oxford-set-theory.