Infinite sets and Foundations—Interviewed on the Daniel Rubin Show

I was interviewed 26 August 2021 by mathematician Daniel Rubin on his show, and we had a lively, wideranging discussion spanning mathematics, infinity, and the philosophy of mathematics. Please enjoy!

Contents

0:00 Intro

2:11 Joel’s background. Interaction between math and philosophy

9:04 Joel’s work; infinite chess.

14:45 Infinite ordinals

22:27 The Cantor-Bendixson process

29:41 Uncountable ordinals

32:10 First order vs. second order theories

41:16 Non-standard analysis

46:57 The ZFC axioms and well-ordering of the reals

58:11 Showing independence of statements. Models and forcing.

1:04:38 Sets, classes, and categories

1:19:22 Is there one true set theory? Are projective sets Lebesgue measurable?

1:30:20 What does set theory look like if certain axioms are rejected?

1:36:06 How to judge philosophical positions about math

1:42:01 Concrete math where set theory becomes relevant. Tarski-Seidenberg on positive polynomials.

1:48:48 Goodstein sequences and the use of infinite ordinals

1:58:43 The state of set theory today

2:01:41 Joel’s recent books

Go check out the other episodes on Daniel’s channel!

One thought on “Infinite sets and Foundations—Interviewed on the Daniel Rubin Show

  1. I really like this interview. It is very instructive and engaging. After watching it, I searched for more similar content, and found the interview by Theodor Nenu. It is a bit more advanced and also instructive for me, but not nearly as engaging as this one.

Leave a Reply to gentzen Cancel reply