Open determinacy for games on the ordinals is stronger than ZFC, CUNY Logic Workshop, October 2015

This will be a talk for the CUNY Logic Workshop on October 2, 2015.

Abstract. The principle of open determinacy for class games — two-player games of perfect information with plays of length $\omega$, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates $\text{Tr}_\alpha$ for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of elementary transfinite recursion ETR over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC+$\Pi^1_1$-comprehension, a proper fragment of Kelley-Morse set theory KM.

This is joint work with Victoria Gitman, with the helpful participation of Thomas Johnstone.

Related article and posts:

 

 

Open determinacy for class games

  • V. Gitman and J. D. Hamkins, “Open determinacy for class games,” in Foundations of Mathematics, Logic at Harvard, Essays in Honor of Hugh Woodin’s 60th Birthday, A. E. Caicedo, J. Cummings, P. Koellner, and P. Larson, Eds., American Mathematical Society, (expected) 2016. (also available as Newton Institute preprint ni15064)  
    @INCOLLECTION{GitmanHamkins2016:OpenDeterminacyForClassGames,
    author = {Victoria Gitman and Joel David Hamkins},
    title = {Open determinacy for class games},
    booktitle = {Foundations of Mathematics, Logic at Harvard, Essays in Honor of Hugh Woodin's 60th Birthday},
    publisher = {American Mathematical Society},
    year = {(expected) 2016},
    editor = {Andr\'es E. Caicedo and James Cummings and Peter Koellner and Paul Larson},
    volume = {},
    number = {},
    series = {Contemporary Mathematics},
    type = {},
    chapter = {},
    pages = {},
    address = {},
    edition = {},
    month = {},
    note = {also available as Newton Institute preprint ni15064},
    url = {http://jdh.hamkins.org/open-determinacy-for-class-games},
    eprint = {1509.01099},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    abstract = {},
    keywords = {},
    }

Abstract. The principle of open determinacy for class games — two-player games of perfect information with plays of length $\omega$, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Godel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates $\text{Tr}_\alpha$ for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of transfinite recursion over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC$+\Pi^1_1$-comprehension, a proper fragment of Kelley-Morse set theory KM.

See my earlier posts on part of this material:

 

The axiom of determinacy for small sets

Lewis ChessmenI should like to argue that the axiom of determinacy is true for all games having a small payoff set. In particular, the size of the smallest non-determined set, in the sense of the axiom of determinacy, is the continuum; every set of size less than the continuum is determined, even when the continuum is enormous.

We consider two-player games of perfect information. Two players, taking turns, play moves from a fixed space $X$ of possible moves, and thereby together build a particular play or instance of the game $\vec a=\langle a_0,a_1,\ldots\rangle\in X^\omega$. The winner of this instance of the game is determined according to whether the play $\vec a$ is a member of some fixed payoff set $U\subset X^\omega$ specifying the winning condition for this game. Namely, the first player wins in the case $\vec a\in U$.

A strategy in such a game is a function $\sigma:X^{<\omega}\to X$ that instructs a particular player how to move next, given the sequence of partial play, and such a strategy is a winning strategy for that player, if all plays made against it are winning for that player. (The first player applies the strategy $\sigma$ only on even-length input, and the second player only to the odd-length inputs.) The game is determined, if one of the players has a winning strategy.

It is not difficult to see that if $U$ is countable, then the game is determined. To see this, note first that if the space of moves $X$ has at most one element, then the game is trivial and hence determined; and so we may assume that $X$ has at least two elements. If the payoff set $U$ is countable, then we may enumerate it as $U=\{s_0,s_1,\ldots\}$. Let the opposing player now adopt the strategy of ensuring on the $n^{th}$ move that the resulting play is different from $s_n$. In this way, the opposing player will ensure that the play is not in $U$, and therefore win. So every game with a countable payoff set is determined.

Meanwhile, using the axiom of choice, we may construct a non-determined set even for the case $X=\{0,1\}$, as follows. Since a strategy is function from finite binary sequences to $\{0,1\}$, there are only continuum many strategies. By the axiom of choice, we may well-order the strategies in order type continuum. Let us define a payoff set $U$ by a transfinite recursive procedure: at each stage, we will have made fewer than continuum many promises about membership and non-membership in $U$; we consider the next strategy on the list; since there are continuum many plays that accord with that strategy for each particular player, we may make two additional promises about $U$ by placing one of these plays into $U$ and one out of $U$ in such a way that this strategy is defeated as a winning strategy for either player. The result of the recursion is a non-determined set of size continuum.

So what is the size of the smallest non-determined set? For a lower bound, we argued above that every countable payoff set is determined, and so the smallest non-determined set must be uncountable, of size at least $\aleph_1$. For an upper bound, we constructed a non-determined set of size continuum. Thus, if the continuum hypothesis holds, then the smallest non-determined set has size exactly continuum, which is $\aleph_1$ in this case. But what if the continuum hypothesis fails? I claim, nevertheless, that the smallest non-determined set still has size continuum.

Theorem. Every game whose winning condition is a set of size less than the continuum is determined.

Proof. Suppose that $U\subset X^\omega$ is the payoff set of the game under consideration, so that $U$ has size less than continuum. If $X$ has at most one element, then the game is trivial and hence determined. So we may assume that $X$ has at least two elements. Let us partition the elements of $X^\omega$ according to whether they have exactly the same plays for the second player. So there are at least continuum many classes in this partition. If $U$ has size less than continuum, therefore, it must be disjoint from at least one (and in fact from most) of the classes of this partition (since otherwise we would have an injection from the continuum into $U$). So there is a fixed sequence of moves for the second player, such that any instance of the game in which the second player makes those moves, the result is not in $U$ and hence is a win for the second player. This is a winning strategy for the second player, and so the game is determined. QED

This proof generalizes the conclusion of the diagonalization argument against a countable payoff set, by showing that for any winning condition set of size less than continuum, there is a fixed play for the opponent (not depending on the play of the first player) that defeats it.

The proof of the theorem uses the axiom of choice in the step where we deduce that $U$ must be disjoint from a piece of the partition, since there are continuum many such pieces and $U$ had size less than the continuum. Without the axiom of choice, this conclusion does not follow. Nevertheless, what the proof does show without AC is that every set that does not surject onto $\mathbb{R}$ is determined, since if $U$ contained an element from every piece of the partition it would surject onto $\mathbb{R}$. Without AC, the assumption that $U$ does not surject onto $\mathbb{R}$ is stronger than the assumption merely that it has size less the continuum, although these properties are equivalent in ZFC.  Meanwhile, these issues are relevant in light of the model suggested by Asaf Karagila in the comments below, which shows that it is consistent with ZF without the axiom of choice that there are small non-determined sets. Namely, the result of Monro shows that it is consistent with ZF that $\mathbb{R}=A\sqcup B$, where both $A$ and $B$ have cardinality less than the continuum. In particular, in this model the continuum injects into neither $A$ nor $B$, and consequently neither player can have a strategy to force the play into their side of this partition. Thus, both $A$ and $B$ are non-determined, even though they have size less than the continuum.

The continuum hypothesis and other set-theoretic ideas for non-set-theorists, CUNY Einstein Chair Seminar, April, 2015

At Dennis Sullivan’s request, I shall speak on set-theoretic topics, particularly the continuum hypothesis, for the Einstein Chair Mathematics Seminar at the CUNY Graduate Center, April 27, 2015, in two parts:

  • An introductory background talk at 11 am, Room GC 6417
  • The main talk at 2 – 4 pm, Room GC 6417

I look forward to what I hope will be an interesting and fruitful interaction. There will be coffee/tea and lunch between the two parts.

Abstract. I shall present several set-theoretic ideas for a non-set-theoretic mathematical audience, focusing particularly on the continuum hypothesis and related issues.

At the introductory background talk, in the morning (11 am), I shall discuss and prove the Cantor-Bendixson theorem, which asserts that every closed set of reals is the union of a countable set and a perfect set (a closed set with no isolated points), and explain how it led to Cantor’s development of the ordinal numbers and how it establishes that the continuum hypothesis holds for closed sets of reals. We’ll see that there are closed sets of arbitrarily large countable Cantor-Bendixson rank. We’ll talk about the ordinals, about $\omega_1$, the long line, and, time permitting, we’ll discuss Suslin’s hypothesis.

At the main talk, in the afternoon (2 pm), I’ll begin with a discussion of the continuum hypothesis, including an explanation of the history and logical status of this axiom with respect to the other axioms of set theory, and establish the connection between the continuum hypothesis and Freiling’s axiom of symmetry. I’ll explain the axiom of determinacy and some of its applications and its rich logical situation, connected with large cardinals. I’ll briefly mention the themes and goals of the subjects of cardinal characteristics of the continuum and of Borel equivalence relation theory.  If time permits, I’d like to explain some fun geometric decompositions of space that proceed in a transfinite recursion using the axiom of choice, mentioning the open questions concerning whether there can be such decompositions that are Borel.

Dennis has requested that at some point the discussion turn to the role of set theory in the foundation for mathematics, compared for example to that of category theory, and I would look forward to that. I would be prepared also to discuss the Feferman theory in comparison to Grothendieck’s axiom of universes, and other issues relating set theory to category theory.