Fregean abstraction in Zermelo-Fraenkel set theory: a deflationary account

Abstract. The standard treatment of sets and definable classes in first-order Zermelo-Fraenkel set theory accords in many respects with the Fregean foundational framework, such as the distinction between objects and concepts. Nevertheless, in set theory we may define an explicit association of definable classes with set objects $F\mapsto\varepsilon F$ in such a way, I shall prove, to realize Frege’s Basic Law V as a ZF theorem scheme, Russell notwithstanding. A similar analysis applies to the Cantor-Hume principle and to Fregean abstraction generally. Because these extension and abstraction operators are definable, they provide a deflationary account of Fregean abstraction, one expressible in and reducible to set theory—every assertion in the language of set theory allowing the extension and abstraction operators $\varepsilon F$, $\# G$, $\alpha H$ is equivalent to an assertion not using them. The analysis thus sidesteps Russell’s argument, which is revealed not as a refutation of Basic Law V as such, but rather as a version of Tarski’s theorem on the nondefinability of truth, showing that the proto-truth-predicate “$x$ falls under the concept of which $y$ is the extension” is not expressible.

  • [DOI] J. D. Hamkins, “Fregean abstraction in Zermelo-Fraenkel set theory: a deflationary account,” Mathematics arXiv, 2022.
    [Bibtex]
    @article{Hamkins:Fregean-abstraction-deflationary-account,
    author = {Hamkins, Joel David},
    title = {Fregean abstraction in Zermelo-Fraenkel set theory: a deflationary account},
    doi = {10.48550/ARXIV.2209.07845},
    eprint = {2209.07845},
    archivePrefix={arXiv},
    primaryClass={math.LO},
    journal = {Mathematics arXiv},
    year = {2022},
    url = {http://jdh.hamkins.org/fregean-abstraction-deflationary-account},
    }

Full text available at arXiv:2209.07845

Fregean abstraction in set theory—a deflationary account, Italian Philosophy of Mathematics, September 2022

This will be a talk for the conference Philosophy of Mathematics: Foundations, Definitions and Axioms, the Fourth International Conference of the Italian Network for the Philosophy of Mathematics, 29 September to 1 October 2022.

Abstract. The standard set-theoretic distinction between sets and classes instantiates in important respects the Fregean distinction between objects and concepts, for in set theory we commonly take the universe of sets as a realm of objects to be considered under the guise of diverse concepts, the definable classes, each serving as a predicate on that domain of individuals. Although it is commonly held that in a very general manner, there can be no association of classes with objects in a way that fulfills Frege’s Basic Law V, nevertheless, in the ZF framework, it turns out that we can provide a completely deflationary account of this and other Fregean abstraction principles. Namely, there is a mapping of classes to objects, definable in set theory in senses I shall explain (hence deflationary), associating every first-order parametrically definable class $F$ with a set object $\varepsilon F$, in such a way that Basic Law V is fulfilled: $$\varepsilon F =\varepsilon G\iff\forall x\ (Fx\leftrightarrow Gx).$$ Russell’s elementary refutation of the general comprehension axiom, therefore, is improperly described as a refutation of Basic Law V itself, but rather refutes Basic Law V only when augmented with powerful class comprehension principles going strictly beyond ZF. The main result leads also to a proof of Tarski’s theorem on the nondefinability of truth as a corollary to Russell’s argument. A central goal of the project is to highlight the issue of definability and deflationism for the extension assignment problem at the core of Fregean abstraction.

A deflationary account of Fregean abstraction in Zermelo-Fraenkel ZF set theory, Oxford, November 2021

This will be a talk for the Oxford Seminar in the Philosophy of Mathematics, 1 November, 4:30-6:30 GMT. The talk will be held on Zoom (contact the seminar organizers for the Zoom link).

Abstract. The standard treatment of sets and classes in Zermelo-Fraenkel set theory instantiates in many respects the Fregean foundational distinction between objects and concepts, for in set theory we commonly take the sets as objects to be considered under the guise of diverse concepts, the definable classes, each serving as a predicate on that domain of individuals. Although it is often asserted that there can be no association of classes with objects in a way that fulfills Frege’s Basic Law V, nevertheless, in the ZF framework I have described, it turns out that Basic Law V does hold, and provably so, along with other various Fregean abstraction principles. These principles are consequences of Zermelo-Fraenkel ZF set theory in the context of all its definable classes. Namely, there is an injective mapping from classes to objects, definable in senses I shall explain, associating every first-order parametrically definable class $F$ with a set object $\varepsilon F$, in such a way that Basic Law V is fulfilled: $$\varepsilon F =\varepsilon G\iff\forall x\ (Fx\leftrightarrow Gx).$$ Russell’s elementary refutation of the general comprehension axiom, therefore, is improperly described as a refutation of Basic Law V itself, but rather refutes Basic Law V only when augmented with powerful class comprehension principles going strictly beyond ZF. The main result leads also to a proof of Tarski’s theorem on the nondefinability of truth as a corollary to Russell’s argument.