Abstract. Many set theorists point to the linearity phenomenon in the hierarchy of consistency strength, by which natural theories tend to be linearly ordered and indeed well ordered by consistency strength. Why should it be linear? In this paper I present counterexamples, natural instances of nonlinearity and illfoundedness in the hierarchy of large cardinal consistency strength, as natural or as nearly natural as I can make them. I present diverse cautious enumerations of ZFC and large cardinal set theories, which exhibit incomparability and illfoundedness in consistency strength, and yet, I argue, are natural. I consider the philosophical role played by “natural” in the linearity phenomenon, arguing ultimately that we should abandon empty naturality talk and aim instead to make precise the mathematical and logical features we had found desirable.

Abstract. Set theorists and philosophers of mathematics often point to a mystery in the foundations of mathematics, namely, that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Why should it be? The phenomenon is thought to carry profound significance for the philosophy of mathematics, perhaps pointing us toward the ultimately correct mathematical theories, the “one road upward.” And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features, however, are often dismissed as unnatural or as Gödelian trickery. In this talk, I aim to rebut that criticism by presenting a variety of natural hypotheses that reveal ill-foundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength.

This is a talk for the Logik Kolloquium at the University of Konstanz, spanning the departments of mathematics, philosophy, linguistics, and computer science. 19 July 2021 on Zoom. 15:15 CEST (2:15 pm BST).

Abstract: An enduring mystery in the foundations of mathematics is the observed phenomenon that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. For any two of the familiar large cardinal hypotheses, one of them generally proves the consistency of the other. Why should this be? Why should it be linear? Some philosophers see the phenomenon as significant for the philosophy of mathematics—it points us toward an ultimate mathematical truth. Meanwhile, the linearity phenomenon is not strictly true as mathematical fact, for we can prove that the hierarchy of consistency strength is actually ill-founded, densely ordered, and nonlinear. The counterexample statements and theories, however, are often dismissed as unnatural. Linearity is thus a phenomenon only for the so-called “naturally occurring” theories. But what counts as natural? Is there a mathematically meaningful account of naturality? In this talk, I shall criticize this notion of naturality, and attempt to undermine the linearity phenomenon by presenting a variety of natural hypotheses that reveal ill-foundedness, density, and incomparability in the hierarchy of consistency strength.

The talk should be generally accessible to university logic students.

This is currently a draft version only of my article-in-progress on the topic of linearity in the hierarchy of consistency strength, especially with large cardinals. Comments are very welcome, since I am still writing the article. Please kindly send me comments by email or just post here.

This article will be the basis of the Weeks 7 & 8 discussion in the Graduate Philosophy of Logic seminar I am currently running with Volker Halbach at Oxford in Hilary term 2021.

I present instances of nonlinearity and illfoundedness in the hierarchy of large cardinal consistency strength—as natural or as nearly natural as I can make them—and consider philosophical aspects of the question of naturality with regard to this phenomenon.

It is a mystery often mentioned in the foundations of mathematics, a fundamental phenomenon to be explained, that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Given any two of the familiar large cardinal hypotheses, for example, generally one of them will prove the consistency of the other.

Why should it be linear? Why should the large cardinal notions line up like this, when they often arise from completely different mathematical matters? Measurable cardinals arise from set-theoretic issues in measure theory; Ramsey cardinals generalize ideas in graph coloring combinatorics; compact cardinals arise with compactness properties of infinitary logic. Why should these disparate considerations lead to principles that are linearly related by direct implication and consistency strength?

The phenomenon is viewed by many in the philosophy of mathematics as significant in our quest for mathematical truth. In light of Gödel incompleteness, after all, we must eternally seek to strengthen even our best and strongest theories. Is the linear hierarchy of consistency strength directing us along the elusive path, the “one road upward” as John Steel describes it, toward the final, ultimate mathematical truth? That is the tantalizing possibility.

Meanwhile, we do know as a purely formal matter that the hierarchy of consistency strength is not actually well-ordered—it is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features, however, are weird self-referential assertions constructed in the Gödelian manner via the fixed-point lemma—logic-game trickery, often dismissed as unnatural.

Many set theorists claim that amongst the natural assertions, consistency strengths remain linearly ordered and indeed well ordered. H. Friedman refers to “the apparent comparability of naturally occurring logical strengths as one of the great mysteries of [the foundations of mathematics].” Andrés Caicedo says,

It is a remarkable empirical phenomenon that we indeed have comparability for natural theories. We expect this to always be the case, and a significant amount of work in inner model theory is guided by this belief.

Stephen G. Simpson writes:

It is striking that a great many foundational theories are linearly ordered by <. Of course it is possible to construct pairs of artificial theories which are incomparable under <. However, this is not the case for the “natural” or non-artificial theories which are usually regarded as significant in the foundations of mathematics. The problem of explaining this observed regularity is a challenge for future foundational research.

John Steel writes “The large cardinal hypotheses [the ones we know] are themselves wellordered by consistency strength,” and he formulates what he calls the “vague conjecture” asserting that

If T is a natural extension of ZFC, then there is an extension H axiomatized by large cardinal hypotheses such that T ≡ Con H. Moreover, ≤ Con is a prewellorder of the natural extensions of ZFC. In particular, if T and U are natural extensions of ZFC, then either T ≤ Con U or U ≤ Con T.

Peter Koellner writes

Remarkably, it turns out that when one restricts to those theories that “arise in nature” the interpretability ordering is quite simple: There are no descending chains and there are no incomparable elements—the interpretability ordering on theories that “arise in nature” is a wellordering.

Let me refer to this position as the natural linearity position, the assertion that all natural assertions of mathematics are linearly ordered by consistency strength. The strong form of the position, asserted by some of those whom I have cited above, asserts that the natural assertions of mathematics are indeed well-ordered by consistency strength. By all accounts, this view appears to be widely held in large cardinal set theory and the philosophy of set theory.

Despite the popularity of this position, I should like in this article to explore the contrary view and directly to challenge the natural linearity position.

Main Question. Can we find natural instances of nonlinearity and illfoundedness in the hierarchy of consistency strength?

I shall try my best.

You have to download the article to see my candidates for natural instances of nonlinearity in the hierarchy of large cardinal consistency strength, but I can tease you a little by mentioning that there are various cautious enumerations of the ZFC axioms which actually succeed in enumerating all the ZFC axioms, but with a strictly weaker consistency strength than the usual (incautious) enumeration. And similarly there are various cautious versions of the large cardinal hypothesis, which are natural, but also incomparable in consistency strength.

(Please note that it was Uri Andrews, rather than Uri Abraham, who settled question 16 with the result of theorem 17. I have corrected this from an earlier draft.)

The talk will be held online via Zoom ID: 998 6013 7362.

Abstract. It is a mystery often mentioned in the foundations of mathematics that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Given any two of the familiar large cardinal hypotheses, for example, generally one of them proves the consistency of the other. Why should this be? The phenomenon is seen as significant for the philosophy of mathematics, perhaps pointing us toward the ultimately correct mathematical theories. And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features are often dismissed as unnatural or as Gödelian trickery. In this talk, I aim to overcome that criticism—as well as I am able to—by presenting a variety of natural hypotheses that reveal ill-foundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength.

The talk should be generally accessible to university logic students, requiring little beyond familiarity with the incompleteness theorem and some elementary ideas from computability theory.

Brent Cody earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2012. Brent’s dissertation work began with the question of finding the exact consistency strength of the GCH failing at a cardinal $\theta$, when $\kappa$ is $\theta$-supercompact. The answer turned out to be a $\theta$-supercompact cardinal that was also $\theta^{++}$-tall. After this, he quickly dispatched more general instances of what he termed the Levinski property for a variety of other large cardinals, advancing his work towards a general investigation of the Easton theorem phenomenon in the large cardinal context, which he is now undertaking. Brent held a post-doctoral position at the Fields Institute in Toronto, afterwards taking up a position at the University of Prince Edward Island. He is now at Virginia Commonwealth University.

Brent Cody, “Some Results on Large Cardinals and the Continuum Function,” Ph.D. dissertation for The Graduate Center of the City University of New York, June, 2012.

Abstract. Given a Woodin cardinal $\delta$, I show that if $F$ is any Easton function with $F”\delta\subseteq\delta$ and GCH holds, then there is a cofinality preserving forcing extension in which $2^\gamma= F(\gamma)$ for each regular cardinal $\gamma<\delta$, and in which $\delta$ remains Woodin.

I also present a new example in which forcing a certain behavior of the continuum function on the regular cardinals, while preserving a given large cardinal, requires large cardinal strength beyond that of the original large cardinal under consideration. Specifically, I prove that the existence of a $\lambda$-supercompact cardinal $\kappa$ such that GCH fails at $\lambda$ is equiconsistent with the existence of a cardinal $\kappa$ that is $\lambda$-supercompact and $\lambda^{++}$-tall.

I generalize a theorem on measurable cardinals due to Levinski, which says that given a measurable cardinal, there is a forcing extension preserving the measurability of $\kappa$ in which $\kappa$ is the least regular cardinal at which GCH holds. Indeed, I show that Levinski’s result can be extended to many other large cardinal contexts. This work paves the way for many additional results, analogous to the results stated above for Woodin cardinals and partially supercompact cardinals.