Embeddings of the universe into the constructible universe, current state of knowledge, CUNY Set Theory Seminar, March 2015

This will be a talk for the CUNY Set Theory Seminar, March 6, 2015.

I shall describe the current state of knowledge concerning the question of whether there can be an embedding of the set-theoretic universe into the constructible universe.

V to L

Question.(Hamkins) Can there be an embedding $j:V\to L$ of the set-theoretic universe $V$ into the constructible universe $L$, when $V\neq L$?

The notion of embedding here is merely that $$x\in y\iff j(x)\in j(y),$$ and such a map need not be elementary nor even $\Delta_0$-elementary. It is not difficult to see that there can generally be no $\Delta_0$-elementary embedding $j:V\to L$, when $V\neq L$.

Nevertheless, the question arises very naturally in the context of my previous work on the embeddability phenomenon, Every countable model of set theory embeds into its own constructible universe, where the title theorem is the following.

Theorem.(Hamkins) Every countable model of set theory $\langle M,\in^M\rangle$, including every countable transitive model of set theory, has an embedding $j:\langle M,\in^M\rangle\to\langle L^M,\in^M\rangle$ into its own constructible universe.

The methods of proof also established that the countable models of set theory are linearly pre-ordered by embeddability: given any two models, one of them embeds into the other; or equivalently, one of them is isomorphic to a submodel of the other. Indeed, one model $\langle M,\in^M\rangle$ embeds into another $\langle N,\in^N\rangle$ just in case the ordinals of the first $\text{Ord}^M$ order-embed into the ordinals of the second $\text{Ord}^N$. (And this implies the theorem above.)

In the proof of that theorem, the embeddings $j:M\to L^M$ are defined completely externally to $M$, and so it was natural to wonder to what extent such an embedding might be accessible inside $M$. And I realized that I could not generally refute the possibility that such a $j$ might even be a class in $M$.

Currently, the question remains open, but we have some partial progress, and have settled it in a number of cases, including the following, on which I’ll speak:

  • If there is an embedding $j:V\to L$, then for a proper class club of cardinals $\lambda$, we have $(2^\lambda)^V=(\lambda^+)^L$.
  • If $0^\sharp$ exists, then there is no embedding $j:V\to L$.
  • If $0^\sharp$ exists, then there is no embedding $j:V\to L$ and indeed no embedding $j:P(\omega)\to L$.
  • If there is an embedding $j:V\to L$, then the GCH holds above $\aleph_0$.
  • In the forcing extension $V[G]$ obtained by adding $\omega_1$ many Cohen reals (or more), there is no embedding $j:V[G]\to L$, and indeed, no $j:P(\omega)^{V[G]}\to V$. More generally, after adding $\kappa^+$ many Cohen subsets to $\kappa$, for any regular cardinal $\kappa$, then in $V[G]$ there is no $j:P(\kappa)\to V$.
  • If $V$ is a nontrivial set-forcing extension of an inner model $M$, then there is no embedding $j:V\to M$. Indeed, there is no embedding $j:P(\kappa^+)\to M$, if the forcing has size $\kappa$. In particular, if $V$ is a nontrivial forcing extension, then there is no embedding $j:V\to L$.
  • Every countable set $A$ has an embedding $j:A\to L$.

This is joint work of myself, W. Hugh Woodin, Menachem Magidor, with contributions also by David Aspero, Ralf Schindler and Yair Hayut.

See my related MathOverflow question: Can there be an embedding $j:V\to L$ from the set-theoretic universe $V$ to the constructible universe $L$, when $V\neq L$?

Talk Abstract

The pluralist perspective on the axiom of constructibility, MidWest PhilMath Workshop, Notre Dame, October 2014

University of Notre DameThis will be a featured talk at the Midwest PhilMath Workshop 15, held at Notre Dame University October 18-19, 2014.  W. Hugh Woodin and I will each give one-hour talks in a session on Perspectives on the foundations of set theory, followed by a one-hour discussion of our talks.

Abstract. I shall argue that the commonly held $V\neq L$ via maximize position, which rejects the axiom of constructibility V = L on the basis that it is restrictive, implicitly takes a stand in the pluralist debate in the philosophy of set theory by presuming an absolute background concept of ordinal. The argument appears to lose its force, in contrast, on an upwardly extensible concept of set, in light of the various facts showing that models of set theory generally have extensions to models of V = L inside larger set-theoretic universes.

Set-theorists often argue against the axiom of constructibility V=L on the grounds that it is restrictive, that we have no reason to suppose that every set should be constructible and that it places an artificial limitation on set-theoretic possibility to suppose that every set is constructible. Penelope Maddy, in her work on naturalism in mathematics, sought to explain this perspective by means of the MAXIMIZE principle, and further to give substance to the concept of what it means for a theory to be restrictive, as a purely formal property of the theory. In this talk, I shall criticize Maddy’s proposal, pointing out that neither the fairly-interpreted-in relation nor the (strongly) maximizes-over relation is transitive, and furthermore, the theory ZFC + `there is a proper class of inaccessible cardinals’ is formally restrictive on Maddy’s account, contrary to what had been desired. Ultimately, I shall argue that the V≠L via maximize position loses its force on a multiverse conception of set theory with an upwardly extensible concept of set, in light of the classical facts that models of set theory can generally be extended to models of V=L. I shall conclude the talk by explaining various senses in which V=L remains compatible with strength in set theory.

This talk will be based on my paper, A multiverse perspective on the axiom of constructibility.