Lectures on the Philosophy of Mathematics, Oxford Michaelmas Term 2020

This series of self-contained lectures on the philosophy of mathematics, offered for Oxford Michaelmas Term 2020, is intended for students preparing for philosophy exam paper 122, although all interested parties are welcome to join. The lectures will be organized loosely around mathematical themes, in such a way that brings various philosophical issues naturally to light.

Lectures will follow my new book Lectures on the Philosophy of Mathematics (MIT Press), with supplemental readings suggested each week for further tutorial work. The book is available for pre-order, to be released 2 February 2021.

Lectures will be held online via Zoom every Wednesday 11-12 am during term at the following Zoom coordinates:


Meeting ID: 828 2222 8760

Passcode: 242081

All lectures will be recorded and made available at a later date.

Lecture 1. Numbers

Numbers are perhaps the essential mathematical idea, but what are numbers? There are many kinds of numbers—natural numbers, integers, rational numbers, real numbers, complex numbers, hyperreal numbers, surreal numbers, ordinal numbers, and more—and these number systems provide a fruitful background for classical arguments on incommensurability and transcendentality, while setting the stage for discussions of platonism, logicism, the nature of abstraction, the significance of categoricity, and structuralism.

Lecture 2. Rigour

Let us consider the problem of mathematical rigour in the development of the calculus. Informal continuity concepts and the use of infinitesimals ultimately gave way to the epsilon-delta limit concept, which secured a more rigourous foundation while also enlarging our conceptual vocabulary, enabling us to express more refined notions, such as uniform continuity, equicontinuity, and uniform convergence. Nonstandard analysis resurrected the infinitesimals on a more secure foundation, providing a parallel development of the subject. Meanwhile, increasing abstraction emerged in the function concept, which we shall illustrate with the Devil’s staircase, space-filling curves, and the Conway base 13 function. Finally, does the indispensability of mathematics for science ground mathematical truth? Fictionalism puts this in question.

Lecture 3. Infinity

We shall follow the allegory of Hilbert’s hotel and the paradox of Galileo to the equinumerosity relation and the notion of countability. Cantor’s diagonal arguments, meanwhile, reveal uncountability and a vast hierarchy of different orders of infinity; some arguments give rise to the distinction between constructive and nonconstructive proof. Zeno’s paradox highlights classical ideas on potential versus actual infinity. Furthermore, we shall count into the transfinite ordinals.

Lecture 4. Geometry

Classical Euclidean geometry is the archetype of a mathematical deductive process. Yet the impossibility of certain constructions by straightedge and compass, such as doubling the cube, trisecting the angle, or squaring the circle, hints at geometric realms beyond Euclid. The rise of non-Euclidean geometry, especially in light of scientific theories and observations suggesting that physical reality is not Euclidean, challenges previous accounts of what geometry is about. New formalizations, such as those of David Hilbert and Alfred Tarski, replace the old axiomatizations, augmenting and correcting Euclid with axioms on completeness and betweenness. Ultimately, Tarski’s decision procedure points to a tantalizing possibility of automation in geometrical reasoning.

Lecture 5. Proof

What is proof? What is the relation between proof and truth? Is every mathematical truth true for a reason? After clarifying the distinction between syntax and semantics and discussing various views on the nature of proof, including proof-as-dialogue, we shall consider the nature of formal proof. We shall highlight the importance of soundness, completeness, and verifiability in any formal proof system, outlining the central ideas used in proving the completeness theorem. The compactness property distills the finiteness of proofs into an independent, purely semantic consequence. Computer-verified proof promises increasing significance; its role is well illustrated by the history of the four-color theorem. Nonclassical logics, such as intuitionistic logic, arise naturally from formal systems by weakening the logical rules.

Lecture 6. Computability

What is computability? Kurt Gödel defined a robust class of computable functions, the primitive recursive functions, and yet he gave reasons to despair of a fully satisfactory answer. Nevertheless, Alan Turing’s machine concept of computability, growing out of a careful philosophical analysis of the nature of human computability, proved robust and laid a foundation for the contemporary computer era; the widely accepted Church-Turing thesis asserts that Turing had the right notion. The distinction between computable decidability and computable enumerability, highlighted by the undecidability of the halting problem, shows that not all mathematical problems can be solved by machine, and a vast hierarchy looms in the Turing degrees, an infinitary information theory. Complexity theory refocuses the subject on the realm of feasible computation, with the still-unsolved P versus NP problem standing in the background of nearly every serious issue in theoretical computer science.

Lecture 7. Incompleteness

David Hilbert sought to secure the consistency of higher mathematics by finitary reasoning about the formalism underlying it, but his program was dashed by Gödel’s incompleteness theorems, which show that no consistent formal system can prove even its own consistency, let alone the consistency of a higher system. We shall describe several proofs of the first incompleteness theorem, via the halting problem, self-reference, and definability, showing senses in which we cannot complete mathematics. After this, we shall discuss the second incompleteness theorem, the Rosser variation, and Tarski’s theorem on the nondefinability of truth. Ultimately, one is led to the inherent hierarchy of consistency strength rising above every foundational mathematical theory.

Lecture 8. Set Theory

We shall discuss the emergence of set theory as a foundation of mathematics. Cantor founded the subject with key set-theoretic insights, but Frege’s formal theory was naive, refuted by the Russell paradox. Zermelo’s set theory, in contrast, grew ultimately into the successful contemporary theory, founded upon a cumulative conception of the set-theoretic universe. Set theory was simultaneously a new mathematical subject, with its own motivating questions and tools, but it also was a new foundational theory with a capacity to represent essentially arbitrary abstract mathematical structure. Sophisticated technical developments, including in particular, the forcing method and discoveries in the large cardinal hierarchy, led to a necessary engagement with deep philosophical concerns, such as the criteria by which one adopts new mathematical axioms and set-theoretic pluralism.

23 thoughts on “Lectures on the Philosophy of Mathematics, Oxford Michaelmas Term 2020

  1. Hi Joel,

    Longtime to listener, first time caller! I would like to preorder a copy of your book, but the link given in the blog-post is broken. Could you please post the link?

    I look forward to watching the recorded lectures.

    Cheers 🙂

  2. Hi Joel, very excited for this! Unfortunately I have a meeting at 11.30am every Wednesday so will have to catch up with the recordings later. Is there any chance you could tell me: a) where I’ll be able to find the recordings; and b) whether they’ll be uploaded regularly, or whether I’ll have to wait until after the end of term? Thanks!

    • Each lecture covers a chapter in my book, which has readings lists at the conclusion of each chapter. (I’m sorry the book is not available until February.)

      Meanwhile, if you are are an Oxford student, contact the Faculty of Philosophy for the official syllabus, which includes further information, including pre-publication access to the book via a rental ebook arrangement with the publisher, for my current students only.

  3. Hello Professor Hamkins, I’m just leaving this comment to thank you for sharing. I watched these records and they are very insightful. Thank you very much, the world is better because of people like you!

  4. Hello Mr.Joel,
    It’s been a great time watching your lecture’s.I am 14 and I was able to understand everything you said.I know that the lectures are over now.But it’ll be great if you come up with some more live lectures like this ,that you take via zoom.
    But thank you for all your efforts!You are amazing!

Leave a Reply

Your email address will not be published. Required fields are marked *