A survey of set-theoretic geology, Notre Dame Logic Seminar, January 2023

This will be a talk 31 January 2-3 for the Notre Dame Logic Seminar.

Abstract. I shall give a general introduction and account of the main elements of set-theoretic geology, the motivating questions, the central definitions, and the main results, including newer advances. We’ll discuss ground models, the ground axiom, the mantle, the ground-model definability theorem, Usuba’s results on downward directedness and more. 

Recent advances in set-theoretic geology, Harvard Logic Colloquium, October 2016

I will speak at the Harvard Logic Colloquium, October 20, 2016, 4-6 pm.

harvard

Abstract. Set-theoretic geology is the study of the set-theoretic universe $V$ in the context of all its ground models and those of its forcing extensions. For example, a bedrock of the universe is a minimal ground model of it and the mantle is the intersection of all grounds. In this talk, I shall explain some recent advances, including especially the breakthrough result of Toshimichi Usuba, who proved the strong downward directed grounds hypothesis: for any set-indexed family of grounds, there is a deeper common ground below them all. This settles a large number of formerly open questions in set-theoretic geology, while also leading to new questions. It follows, for example, that the mantle is a model of ZFC and provably the largest forcing-invariant definable class. Strong downward directedness has also led to an unexpected connection between large cardinals and forcing: if there is a hyper-huge cardinal $\kappa$, then the universe indeed has a bedrock and all grounds use only $\kappa$-small forcing.

Slides

Set-theoretic geology and the downward-directed grounds hypothesis, CUNY Set Theory seminar, September 2016

This will be a talk for the CUNY Set Theory Seminar, September 2 and 9, 2016.

Blender3D EarthQuarterCut.jpgIn two talks, I shall give a complete detailed account of Toshimichi Usuba’s recent proof of the strong downward-directed grounds hypothesis.  This breakthrough result answers what had been for ten years the central open question in the area of set-theoretic geology and leads immediately to numerous consequences that settle many other open questions in the area, as well as to a sharpening of some of the central concepts of set-theoretic geology, such as the fact that the mantle coincides with the generic mantle and is a model of ZFC.

Although forcing is often viewed as a method of constructing larger models extending a given model of set theory, the topic of set-theoretic geology inverts this perspective by investigating how the current set-theoretic universe $V$ might itself have arisen as a forcing extension of an inner model.  Thus, an inner model $W\subset V$ is a ground of $V$ if we can realize $V=W[G]$ as a forcing extension of $W$ by some $W$-generic filter $G\subset\mathbb{Q}\in W$.  It is a consequence of the ground-model definability theorem that every such $W$ is definable from parameters, and from this it follows that many second-order-seeming questions about the structure of grounds turn out to be first-order expressible in the language of set theory.

For example, Reitz had inquired in his dissertation whether any two grounds of $V$ must have a common deeper ground. Fuchs, myself and Reitz introduced the downward-directed grounds hypothesis DDG and the strong DDG, which asserts a positive answer, even for any set-indexed collection of grounds, and we showed that this axiom has many interesting consequences for set-theoretic geology.

Last year, Usuba proved the strong DDG, and I shall give a complete account of the proof, with some simplifications I had noticed. I shall also present Usuba’s related result that if there is a hyper-huge cardinal, then there is a bedrock model, a smallest ground. I find this to be a surprising and incredible result, as it shows that large cardinal existence axioms have consequences on the structure of grounds for the universe.

Among the consequences of Usuba’s result I shall prove are:

  1. Bedrock models are unique when they exist.
  2. The mantle is absolute by forcing.
  3. The mantle is a model of ZFC.
  4. The mantle is the same as the generic mantle.
  5. The mantle is the largest forcing-invariant class, and equal to the intersection of the generic multiverse.
  6. The inclusion relation agrees with the ground-of relation in the generic multiverse. That is, if $N\subset M$ are in the same generic multiverse, then $N$ is a ground of $M$.
  7. If ZFC is consistent, then the ZFC-provably valid downward principles of forcing are exactly S4.2.
  8. (Usuba) If there is a hyper-huge cardinal, then there is a bedrock for the universe.

Related topics in set-theoretic geology:

CUNY Set theory seminar abstract I | abstract II

Upward closure in the generic multiverse of a countable model of set theory, RIMS 2015, Kyoto, Japan

Philosophers Walk Kyoto Japan (summer)This will be a talk for the conference Recent Developments in Axiomatic Set Theory at the Research Institute for Mathematical Sciences (RIMS) in Kyoto, Japan, September 16-18, 2015.

Abstract. Consider a countable model of set theory amongst its forcing extensions, the ground models of those extensions, the extensions of those models and so on, closing under the operations of forcing extension and ground model.  This collection is known as the generic multiverse of the original model.  I shall present a number of upward-oriented closure results in this context. For example, for a long-known negative result, it is a fun exercise to construct forcing extensions $M[c]$ and $M[d]$ of a given countable model of set theory $M$, each by adding an $M$-generic Cohen real, which cannot be amalgamated, in the sense that there is no common extension model $N$ that contains both $M[c]$ and $M[d]$ and has the same ordinals as $M$. On the positive side, however, any increasing sequence of extensions $M[G_0]\subset M[G_1]\subset M[G_2]\subset\cdots$, by forcing of uniformly bounded size in $M$, has an upper bound in a single forcing extension $M[G]$. (Note that one cannot generally have the sequence $\langle G_n\mid n<\omega\rangle$ in $M[G]$, so a naive approach to this will fail.)  I shall discuss these and related results, many of which appear in the “brief upward glance” section of my recent paper:  G. Fuchs, J. D. Hamkins and J. Reitz, Set-theoretic geology.


Recent progress on the modal logic of forcing and grounds, CUNY Logic Workshop, September 2012

This will be a talk for the CUNY Logic Workshop on September 7, 2012.

Abstract. The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, with “true in all forcing extensions” and“true in some forcing extension” as the accompanying modal operators. In this modal language one may easily express sweeping general forcing principles, such asthe assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, orthe assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC.  Similarly, the dual modal logic of grounds concerns the modalities “true in all ground models” and “true in some ground model”.  In this talk, I shall survey the recent progress on the modal logic of forcing and the modal logic of grounds. This is joint work with Benedikt Loewe and George Leibman.

 

Moving up and down in the generic multiverse

[bibtex key=HamkinsLoewe2013:MovingUpAndDownInTheGenericMultiverse]

In this extended abstract we investigate the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations “is a forcing extension of”‘ and “is a ground model of”. The fragment of the first relation is the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.

The main theorems are as follows:

Theorem.  If  ZFC is consistent, then there is a model of  ZFC  whose modal logic of forcing and modal logic of grounds are both S4.2.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S4.2 and whose modal logic of grounds is S5.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S5 and whose modal logic of grounds is S4.2.

Theorem. There is no model of set theory such that both its modal logic of forcing and its modal logic of grounds are S5.

The current article is a brief extended abstract (10 pages).  A fuller account with more detailed proofs and further information will be provided in a subsequent articl

eprints:  ar$\chi$iv | NI12059-SAS | Hamburg #450

Jonas Reitz

Jonas Reitz earned his Ph.D under my supervision in June, 2006 at the CUNY Graduate Center.  He was truly a pleasure to supervise. From the earliest days of his dissertation research, he had his own plan for the topic of the work: he wanted to “undo” forcing, to somehow force backwards, from the extension to the ground model. At first I was skeptical, but in time, ideas crystalized around the ground axiom (now with its own Wikipedia entry), formulated using a recent-at-the-time result of Richard Laver.  Along with Laver’s theorem, Jonas’s dissertation was the beginning of the body of work now known as set-theoretic geology.  Jonas holds a tenured position at the New York City College of Technology of CUNY.

Jonas Reitz


web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts

Jonas Reitz, “The ground axiom,” Ph.D. dissertation, CUNY Graduate Center, June, 2006.  ar$\chi$iv

Abstract.  A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set-forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class-forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set-forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent. As many of these results rely on forcing with proper classes, an appendix is provided giving an exposition of the underlying theory of proper class forcing.

The ground axiom is consistent with $V\ne{\rm HOD}$

[bibtex key=HamkinsReitzWoodin2008:TheGroundAxiomAndVequalsHOD]

Abstract. The Ground Axiom asserts that the universe is not a nontrivial set-forcing extension of any inner model. Despite the apparent second-order nature of this assertion, it is first-order expressible in set theory. The previously known models of the Ground Axiom all satisfy strong forms of $V=\text{HOD}$. In this article, we show that the Ground Axiom is relatively consistent with $V\neq\text{HOD}$. In fact, every model of ZFC has a class-forcing extension that is a model of $\text{ZFC}+\text{GA}+V\neq\text{HOD}$. The method accommodates large cardinals: every model of ZFC with a supercompact cardinal, for example, has a class-forcing extension with $\text{ZFC}+\text{GA}+V\neq\text{HOD}$ in which this supercompact cardinal is preserved.

The Ground Axiom

[bibtex key=Hamkins2005:TheGroundAxiom]

This is an extended abstract for a talk I gave at the 2005 Workshop in Set Theory at the Mathematisches Forschungsinstitut Oberwolfach.

Oberwolfach Research Report 55/2005 | Ground Axiom on Wikipedia