[bibtex key=”FuchsHamkins:TheBukovskyDehornoyPhenomenonForBooleanUltrapowers”]
Abstract. We show that while the length $\omega$ iterated ultrapower by a normal ultrafilter is a Boolean ultrapower by the Boolean algebra of Příkrý forcing, it is consistent that no iteration of length greater than $\omega$ (of the same ultrafilter and its images) is a Boolean ultrapower. For longer iterations, where different ultrafilters are used, this is possible, though, and we give Magidor forcing and a generalization of Příkrý forcing as examples. We refer to the discovery that the intersection of the finite iterates of the universe by a normal measure is the same as the generic extension of the direct limit model by the critical sequence as the Bukovský-Dehornoy phenomenon, and we develop a criterion (the existence of a simple skeleton) for when a version of this phenomenon holds in the context of Boolean ultrapowers.