The lottery preparation

[bibtex key=Hamkins2000:LotteryPreparation]

The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal $\kappa$, for example, becomes fully indestructible by $\kappa$-directed closed forcing; a strong cardinal $\kappa$ becomes indestructible by less-than-or-equal-$\kappa$-strategically closed forcing; and a strongly compact cardinal $\kappa$ becomes indestructible by, among others, the forcing to add a Cohen subset to $\kappa$, the forcing to shoot a club $C$ in $\kappa$ which avoids the measurable cardinals and the forcing to add various long Prikry sequences. The lottery preparation works best when performed after fast function forcing, which adds a new completely general kind of Laver function for any large cardinal, thereby freeing the Laver function concept from the supercompact cardinal context.

Gap forcing: generalizing the Lévy-Solovay theorem

[bibtex key=Hamkins99:GapForcingGen]

The landmark Levy-Solovay Theorem limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.

Superdestructibility: a dual to Laver's indestructibility

[bibtex key=HamkinsShelah98:Dual]

After small forcing, any $<\kappa$-closed forcing will destroy the supercompactness, even the strong compactness, of $\kappa$.

Destruction or preservation as you like it

[bibtex key=Hamkins98:AsYouLikeIt]

The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call exact preservation theorems, I use this new technology to perform a kind of partial Laver preparation, and thereby finely control the class of posets which preserve a supercompact cardinal. Eventually, I prove the ‘As You Like It’ Theorem, which asserts that the class of ${<}\kappa$-directed closed posets which preserve a supercompact cardinal $\kappa$ can be made by forcing to conform with any pre-selected local definition which respects the equivalence of forcing. Along the way I separate completely the levels of the superdestructibility hierarchy, and, in an epilogue, prove that the notions of fragility and superdestructibility are orthogonal — all four combinations are possible.

Canonical seeds and Prikry trees

[bibtex key=Hamkins97:Seeds]

Applying the seed concept to Prikry tree forcing $\mathbb{P}_\mu$, I investigate how well $\mathbb{P}_\mu$ preserves the maximality property of ordinary Prikry forcing and prove that $\mathbb{P}_\mu$ Prikry sequences are maximal exactly when $\mu$ admits no non-canonical seeds via a finite iteration.  In particular, I conclude that if $\mu$ is a strongly normal supercompactness measure, then $\mathbb{P}_\mu$ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. H. Woodin’s.

A class of strong diamond principles

[bibtex key=Hamkins:LaverDiamond]

In the context of large cardinals, the classical diamond principle $\Diamond_\kappa$ is easily strengthened in natural ways. When $\kappa$ is a measurable cardinal, for example, one might ask that a $\Diamond_\kappa$ sequence anticipate every subset of $\kappa$ not merely on a stationary set, but on a set of normal measure one. This is equivalent to the existence of a function $\ell:\kappa\to V_\kappa$ such that for any $A\in H(\kappa^+)$ there is an embedding $j:V\to M$ having critical point $\kappa$ with $j(\ell)(\kappa)=A$. This and similar principles formulated for many other large cardinal notions, including weakly compact, indescribable, unfoldable, Ramsey, strongly unfoldable and strongly compact cardinals, are best conceived as an expression of the Laver function concept from supercompact cardinals for these weaker large cardinal notions. The resulting Laver diamond principles can hold or fail in a variety of interesting ways.