This was an interview with Robinson Erhardt on Robinson’s Podcast, part of his series of interviews with various philosophers, including many philosophers of mathematics and more.

We had a wonderfully wide-ranging discussion about the philosophy of mathematics, the philosophy of set theory, pluralism, and many other topics. The main focus was the topic of infinity, following selections from my new book, The Book of Infinity, currently being serialized on my substack, joeldavidhamkins.substack.com, with discussion of Zeno’s paradox, the Chocolatier’s Game, Hilbert’s Grand Hotel and more.

Robinson compiled the following outline with links to special parts of the interview:

- 00:00 Introduction
- 2:52 Is Joel a Mathematician or a Philosopher?
- 6:13 The Philosophical Influence of Hugh Woodin
- 10:29 The Intersection of Set Theory and Philosophy of Math
- 16:29 Serializing the Book of the Infinite
- 20:05 Zeno of Elea, Continuity, and Geometric Series
- 39:39 Infinite Games and the Chocolatier
- 53:35 Hilbert’s Hotel
- 1:10:26 Cantor’s Theorem
- 1:31:37 The Continuum Hypothesis
- 1:43:02 The Set-Theoretic Multiverse
- 2:00:25 Berry’s Paradox and Large Numbers
- 2:16:15 Skolem’s Paradox and Indescribable Numbers
- 2:28:41 Pascal’s Wager and Reasoning Around Remote Events
- 2:49:35 MathOverflow
- 3:04:40 Joel’s Impeccable Fashion Sense

Read the book here: joeldavidhamkins.substack.com.