This will be a talk for the conference Fudan Model Theory and Philosophy of Mathematics, held at Fudan University in Shanghai and online, 21-24 August 2021. My talk will take place on Zoom on 23 August 20:00 Beijing time (1pm BST).
Abstract. Tennenbaum famously proved that there is no computable presentation of a nonstandard model of arithmetic or indeed of any model of set theory. In this talk, I shall discuss the Tennenbaum phenomenon as it arises for computable quotient presentations of models. Quotient presentations offer a philosophically attractive treatment of identity, a realm in which questions of identity are not necessarily computable. Objects in the presentation serve in effect as names for objects in the final quotient structure, names that may represent the same or different items in that structure, but one cannot necessarily tell which. Bakhadyr Khoussainov outlined a sweeping vision for quotient presentations in computable model theory and made several conjectures concerning the Tennenbaum phenomenon. In this talk, I shall discuss joint work with Michał Godziszewski that settles and addresses several of these conjectures.