This will be a talk for the Barcelona Set Theory Seminar, 28 October 2020 4 pm CET (3 pm UK). Contact Joan Bagaria bagaria@ub.edu for the access link.

**Abstract.** The Barwise extension theorem, asserting that every countable model of ZF set theory admits an end-extension to a model of ZFC+V=L, is both a technical culmination of the pioneering methods of Barwise in admissible set theory and infinitary logic and also one of those rare mathematical theorems that is saturated with philosophical significance. In this talk, I shall describe a new proof of the theorem that omits any need for infinitary logic and relies instead only on classical methods of descriptive set theory. This proof leads directly to the universal finite sequence, a Sigma_1 definable finite sequence, which can be extended arbitrarily as desired in suitable end-extensions of the universe. The result has strong consequences for the nature of set-theoretic potentialism. This work is joint with Kameryn J. Williams.

Article: The $\Sigma_1$-definable universal finite sequence

- J. D. Hamkins and K. J. Williams, “The $\Sigma_1$-definable universal finite sequence,” ArXiv e-prints, 2019.

[Bibtex]`@ARTICLE{HamkinsWilliams:The-universal-finite-sequence, author = {Joel David Hamkins and Kameryn J. Williams}, title = {The $\Sigma_1$-definable universal finite sequence}, journal = {ArXiv e-prints}, year = {2019}, volume = {}, number = {}, pages = {}, month = {}, note = {Under review}, abstract = {}, keywords = {under-review}, eprint = {1909.09100}, archivePrefix = {arXiv}, primaryClass = {math.LO}, source = {}, doi = {}, }`