Set-theoretic potentialism, CUNY Logic Workshop, September, 2016

This will be a talk for the CUNY Logic Workshop, September 16, 2016, at the CUNY Graduate Center, Room 6417, 2-3:30 pm.

Book 06487 20040730160046 droste effect nevit.jpgAbstract.  In analogy with the ancient views on potential as opposed to actual infinity, set-theoretic potentialism is the philosophical position holding that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems generally validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is current joint work with Øystein Linnebo, in progress, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing.

CUNY Logic Workshop abstract | link to article will be posted later

The modal logic of set-theoretic potentialism, Kyoto, September 2016

Kyoto cuisineThis will be a talk for the workshop conference Mathematical Logic and Its Applications, which will be held at the Research Institute for Mathematical Sciences, Kyoto University, Japan, September 26-29, 2016, organized by Makoto Kikuchi. The workshop is being held in memory of Professor Yuzuru Kakuda, who was head of the research group in logic at Kobe University during my stay there many years ago.

Abstract.  Set-theoretic potentialism is the ontological view in the philosophy of mathematics that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is joint work with Øystein Linnebo, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing. Our research article is currently in progress.

Slides | Workshop program

Erin Carmody

Erin Carmody successfully defended her dissertation under my supervision at the CUNY Graduate Center on April 24, 2015, and she earned her Ph.D. degree in May, 2015. Her dissertation follows the theme of killing them softly, proving many theorems of the form: given $\kappa$ with large cardinal property $A$, there is a forcing extension in which $\kappa$ no longer has property $A$, but still has large cardinal property $B$, which is very slightly weaker than $A$. Thus, she aims to enact very precise reductions in large cardinal strength of a given cardinal or class of large cardinals. In addition, as a part of the project, she developed transfinite meta-ordinal extensions of the degrees of hyper-inaccessibility and hyper-Mahloness, giving notions such as $(\Omega^{\omega^2+5}+\Omega^3\cdot\omega_1^2+\Omega+2)$-inaccessible among others.

Erin Carmody

G+ profile | math genealogy | MathOverflow profileNY Logic profilear$\chi$iv

Erin Carmody, “Forcing to change large cardinal strength,”  Ph.D. dissertation for The Graduate Center of the City University of New York, May, 2015.  ar$\chi$iv | PDF

Erin has accepted a professorship at Nebreska Wesleyan University for.the 2015-16 academic year.


 

Erin is also an accomplished artist, who has had art shows of her work in New York, and she has pieces for sale. Much of her work has an abstract or mathematical aspect, while some pieces exhibit a more emotional or personal nature. My wife and I have two of Erin’s paintings in our collection:
OceanIMG_0597

Singular cardinals and strong extenders

  • A. W. Apter, J. Cummings, and J. D. Hamkins, “Singular cardinals and strong extenders,” Cent. Eur. J. Math., vol. 11, iss. 9, pp. 1628-1634, 2013.  
    @article {ApterCummingsHamkins2013:SingularCardinalsAndStrongExtenders,
    AUTHOR = {Apter, Arthur W. and Cummings, James and Hamkins, Joel David},
    TITLE = {Singular cardinals and strong extenders},
    JOURNAL = {Cent. Eur. J. Math.},
    FJOURNAL = {Central European Journal of Mathematics},
    VOLUME = {11},
    YEAR = {2013},
    NUMBER = {9},
    PAGES = {1628--1634},
    ISSN = {1895-1074},
    MRCLASS = {03E55 (03E35 03E45)},
    MRNUMBER = {3071929},
    MRREVIEWER = {Samuel Gomes da Silva},
    DOI = {10.2478/s11533-013-0265-1},
    URL = {http://jdh.hamkins.org/singular-cardinals-strong-extenders/},
    eprint = {1206.3703},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Brent Cody asked the question whether the situation can arise that one has an elementary embedding $j:V\to M$ witnessing the $\theta$-strongness of a cardinal $\kappa$, but where $\theta$ is regular in $M$ and singular in $V$.

In this article, we investigate the various circumstances in which this does and does not happen, the circumstances under which there exist a singular cardinal $\mu$ and a short $(\kappa, \mu)$-extender $E$ witnessing “$\kappa$ is $\mu$-strong”, such that $\mu$ is singular in $Ult(V, E)$.