The modal logic of set-theoretic potentialism and the potentialist maximality principles

Joint work with Øystein Linnebo, University of Oslo.

[bibtex key=”HamkinsLinnebo:Modal-logic-of-set-theoretic-potentialism”]

Abstract. We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe (Structural connections between a forcing class and its modal logic), including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism (true in all larger $V_\beta$); Grothendieck-Zermelo potentialism (true in all larger $V_\kappa$ for inaccessible cardinals $\kappa$); transitive-set potentialism (true in all larger transitive sets); forcing potentialism (true in all forcing extensions); countable-transitive-model potentialism (true in all larger countable transitive models of ZFC); countable-model potentialism (true in all larger countable models of ZFC); and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account.

Set-theoretic potentialism is the view in the philosophy of mathematics that the universe of set theory is never fully completed, but rather unfolds gradually as parts of it increasingly come into existence or become accessible to us. On this view, the outer reaches of the set-theoretic universe have merely potential rather than actual existence, in the sense that one can imagine “forming” or discovering always more sets from that realm, as many as desired, but the task is never completed. For example, height potentialism is the view that the universe is never fully completed with respect to height: new ordinals come into existence as the known part of the universe grows ever taller. Width potentialism holds that the universe may grow outwards, as with forcing, so that already existing sets can potentially gain new subsets in a larger universe. One commonly held view amongst set theorists is height potentialism combined with width actualism, whereby the universe grows only upward rather than outward, and so at any moment the part of the universe currently known to us is a rank initial segment $V_\alpha$ of the potential yet-to-be-revealed higher parts of the universe. Such a perspective might even be attractive to a Platonistically inclined large-cardinal set theorist, who wants to hold that there are many large cardinals, but who also is willing at any moment to upgrade to a taller universe with even larger large cardinals than had previously been mentioned. Meanwhile, the width-potentialist height-actualist view may be attractive for those who wish to hold a potentialist account of forcing over the set-theoretic universe $V$. On the height-and-width-potentialist view, one views the universe as growing with respect to both height and width. A set-theoretic monist, in contrast, with an ontology having only a single fully existing universe, will be an actualist with respect to both width and height. The second author has described various potentialist views in previous work.

Although we are motivated by the case of set-theoretic potentialism, the potentialist idea itself is far more general, and can be carried out in a general model-theoretic context. For example, the potentialist account of arithmetic is deeply connected with the classical debates surrounding potential as opposed to actual infinity, and indeed, perhaps it is in those classical debates where one finds the origin of potentialism. More generally, one can provide a potentialist account of truth in the context of essentially any kind of structure in any language or theory.

Our project here is to analyze and understand more precisely the modal commitments of various set-theoretic potentialist views.  After developing a general model-theoretic account of the semantics of potentialism and providing tools for establishing both lower and upper bounds on the modal validities for various kinds of potentialist contexts, we shall use those tools to settle exactly the propositional modal validities for several natural kinds of set-theoretic height and width potentialism.

Here is a summary account of the modal logics for various flavors of set-theoretic potentialism.

Flavours of potentialism

In each case, the indicated lower and upper bounds are realized in particular worlds, usually in the strongest possible way that is consistent with the stated inclusions, although in some cases, this is proved only under additional mild technical hypotheses. Indeed, some of the potentialist accounts are only undertaken with additional set-theoretic assumptions going beyond ZFC. For example, the Grothendieck-Zermelo account of potentialism is interesting mainly only under the assumption that there are a proper class of inaccessible cardinals, and countable-transitive-model potentialism is more robust under the assumption that every real is an element of a countable transitive model of set theory, which can be thought of as a mild large-cardinal assumption.

The upper bound of S5, when it is realized, constitutes a potentialist maximality principle, for in such a case, any statement that could possibly become actually true in such a way that it remains actually true as the universe unfolds, is already actually true. We identify necessary and sufficient conditions for each of the concepts of potentialism for a world to fulfill this potentialist maximality principle. For example, in rank-potentialism, a world $V_\kappa$ satisfies S5 with respect to the language of set theory with arbitrary parameters if and only if $\kappa$ is $\Sigma_3$-correct. And it satisfies S5 with respect to the potentialist language of set theory with parameters if and only if it is $\Sigma_n$-correct for every $n$.  Similar results hold for each of the potentialist concepts.

Finally, let me mention the strong affinities between set-theoretic potentialism and set-theoretic pluralism, particularly with the various set-theoretic multiverse conceptions currently in the literature. Potentialists may regard themselves mainly as providing an account of truth ultimately for a single universe, gradually revealed, the limit of their potentialist system. Nevertheless, the universe fragments of their potentialist account can often naturally be taken as universes in their own right, connected by the potentialist modalities, and in this way, every potentialist system can be viewed as a multiverse. Indeed, the potentialist systems we analyze in this article—including rank potentialism, forcing potentialism, generic-multiverse potentialism, countable-transitive-model potentialism, countable-model potentialism—each align with corresponding natural multiverse conceptions. Because of this, we take the results of this article as providing not only an analysis of the modal commitments of set-theoretic potentialism, but also an analysis of the modal commitments of various particular set-theoretic multiverse conceptions. Indeed, one might say that it is possible (ahem), in another world, for this article to have been entitled, “The modal logic of various set-theoretic multiverse conceptions.”

For more, please follow the link to the arxiv where you can find the full article.

[bibtex key=”HamkinsLinnebo:Modal-logic-of-set-theoretic-potentialism”]

Set-theoretic potentialism, CUNY Logic Workshop, September, 2016

This will be a talk for the CUNY Logic Workshop, September 16, 2016, at the CUNY Graduate Center, Room 6417, 2-3:30 pm.

Book 06487 20040730160046 droste effect nevit.jpgAbstract.  In analogy with the ancient views on potential as opposed to actual infinity, set-theoretic potentialism is the philosophical position holding that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems generally validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is current joint work with Øystein Linnebo, in progress, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing.

CUNY Logic Workshop abstract | link to article will be posted later

The modal logic of set-theoretic potentialism, Kyoto, September 2016

Kyoto cuisineThis will be a talk for the workshop conference Mathematical Logic and Its Applications, which will be held at the Research Institute for Mathematical Sciences, Kyoto University, Japan, September 26-29, 2016, organized by Makoto Kikuchi. The workshop is being held in memory of Professor Yuzuru Kakuda, who was head of the research group in logic at Kobe University during my stay there many years ago.

Abstract.  Set-theoretic potentialism is the ontological view in the philosophy of mathematics that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is joint work with Øystein Linnebo, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing. Our research article is currently in progress.

Slides | Workshop program