Large cardinals need not be large in HOD

  • Y. Cheng, S. Friedman, and J. D. Hamkins, “Large cardinals need not be large in HOD,” Annals of Pure and Applied Logic, vol. 166, iss. 11, pp. 1186-1198, 2015.  
    @ARTICLE{ChengFriedmanHamkins2015:LargeCardinalsNeedNotBeLargeInHOD,
    title = "Large cardinals need not be large in {HOD} ",
    journal = "Annals of Pure and Applied Logic ",
    volume = "166",
    number = "11",
    pages = "1186 - 1198",
    year = "2015",
    note = "",
    issn = "0168-0072",
    doi = "10.1016/j.apal.2015.07.004",
    eprint = {1407.6335},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/large-cardinals-need-not-be-large-in-hod},
    author = "Yong Cheng and Sy-David Friedman and Joel David Hamkins",
    keywords = "Large cardinals",
    keywords = "HOD",
    keywords = "Forcing",
    keywords = "Absoluteness ",
    abstract = "Abstract We prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal κ need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in V, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals. "
    }

Abstract. We prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal $\kappa$ need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals.

In this article, we prove that large cardinals need not generally exhibit their large cardinal nature in HOD, the inner model of hereditarily ordinal-definable sets, and there can be a divergence in strength between the large cardinals of the ambient set-theoretic universe $V$ and those of HOD. Our general theme concerns the questions:

Questions.

1. To what extent must a large cardinal in $V$ exhibit its large cardinal properties in HOD?

2. To what extent does the existence of large cardinals in $V$ imply the existence of large cardinals in HOD?

For large cardinal concepts beyond the weakest notions, we prove, the answers are generally negative. In Theorem 4, for example, we construct a model with a supercompact cardinal that is not weakly compact in HOD, and Theorem 9 extends this to a proper class of supercompact cardinals, none of which is weakly compact in HOD, thereby providing some strongly negative instances of (1). The same model has a proper class of supercompact cardinals, but no supercompact cardinals in HOD, providing a negative instance of (2). The natural common strengthening of these situations would be a model with a proper class of supercompact cardinals, but no weakly compact cardinals in HOD. We were not able to arrange that situation, however, and furthermore it would be ruled out by Conjecture 13, an intriguing positive instance of (2) recently proposed by W. Hugh Woodin, namely, that if there is a supercompact cardinal, then there is a measurable cardinal in HOD. Many other natural possibilities, such as a proper class of measurable cardinals with no weakly compact cardinals in HOD, remain as open questions.

CUNY talkRutgers talk | Luminy talk

Large cardinals need not be large in HOD, International Workshop on Set Theory, CIRM, Luminy, September 2014

I shall speak at the 13th International Workshop on Set Theory, held at the CIRM Centre International de Rencontres Mathématiques in Luminy near Marseille, France, September 29 to October 3, 2014. 

Abstract.  I shall prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals. There are many open questions.

This talk will include joint work with Cheng Yong and Sy-David Friedman.

Article | Participants | Slides

Large cardinal indestructibility: two slick new proofs of prior results

$\newcommand\HOD{\text{HOD}}$

I’ve recently found two slick new proofs of some of my prior results on indestructibility, using the idea of an observation of Arthur Apter’s.  What he had noted is:

Observation. (Apter [1])  If $\kappa$ is a Laver indestructible supercompact cardinal, then $V_\kappa\subset\HOD$.  Indeed, $V_\kappa$ satisfies the continuum coding axiom CCA.

Proof. The continuum coding axiom asserts that every set of ordinals is coded into the GCH pattern (it follows that they are each coded unboundedly often). If $x\subset\kappa$ is any bounded set of ordinals, then let $\mathbb{Q}$ be the forcing to code $x$ into the GCH pattern at regular cardinals directly above $\kappa$. This forcing is ${\lt}\kappa$-directed closed, and so by our assumption, $\kappa$ remains supercompact and in particular $\Sigma_2$-reflecting in the extension $V[G]$. Since $x$ is coded into the GCH pattern of $V[G]$, it follows by reflection that $V_\kappa=V[G]_\kappa$ must also think that $x$ is coded, and so $V_\kappa\models\text{CCA}$. QED

First, what I noticed is that this immediately implies that small forcing ruins indestructibility:

Theorem. (Hamkins, Shelah [2], Hamkins [3]) After any nontrivial forcing of size less than $\kappa$, the cardinal $\kappa$ is no longer indestructibly supercompact, nor even indestructibly $\Sigma_2$-reflecting.

Proof.  Nontrivial small forcing $V[g]$ will add a new set of ordinals below $\kappa$, which will not be coded unboundedly often into the continuum function of $V[g]$, and so $V[g]_\kappa$ will not satisfy the CCA.  Hence, $\kappa$ will not be indestructibly $\Sigma_2$-reflecting there. QED

This argument can be seen as essentially related to Shelah’s 1998 argument, given in [2].

Second, I also noticed that a similar idea can be used to prove:

Theorem. (Bagaria, Hamkins, Tsaprounis, Usuba [4])  Superstrong and other large cardinals are never Laver indestructible.

Proof.  Suppose the superstrongness of $\kappa$ is indestructible. It follows by the observation that $V_\kappa$ satisfies the continuum coding axiom. Now force to add a $V$-generic Cohen subset $G\subset\kappa$.  If $\kappa$ were superstrong in $V[G]$, then there would be $j:V[G]\to M$ with $V[G]_{j(\kappa)}=M_{j(\kappa)}$. Since $G$ is not coded into the continuum function, $M_{j(\kappa)}$ does not satisfy the CCA.  This contradicts the elementarity $V_\kappa=V[G]_\kappa\prec M_{j(\kappa)}$. QED

The argument shows that even the $\Sigma_3$-extendibility of $\kappa$ is never Laver indestructible.

I would note, however, that the slick proof does not achieve the stronger result of [4], which is that superstrongness is never indestructible even by $\text{Add}(\kappa,1)$, and that after forcing to add a Cohen subset to $\kappa$ (among any of many other common forcing notions), the cardinal $\kappa$ is never $\Sigma_3$-extendible (and hence not superstrong, not weakly superstrong, and so on).  The slick proof above uses indestructibility by the coding forcing to get the CCA in $V_\kappa$, and it is not clear how one would argue that way to get these stronger results of [4].

[1] Arthur W. Apter and Shoshana Friedman. HOD-supercompactness, inestructibility, and level-by-level equivalence, to appear in Bulletin of the Polish Academy of Sciences (Mathematics).

[2] Joel David Hamkins, Saharon Shelah, Superdestructibility: A Dual to Laver’s Indestructibility,  J. Symbolic Logic, Volume 63, Issue 2 (1998), 549-554.

[3] Joel David Hamkins, Small forcing makes any cardinal superdestructible, J. Symbolic Logic, 63 (1998).

[4] Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other large cardinals are never Laver indestructible, to appear in the Archive of Math Logic (special issue in memory of Richard Laver).

Large cardinals need not be large in HOD, CUNY Set Theory Seminar, January 2014

This will be a talk for the CUNY Set Theory Seminar, January 31, 2014, 10:00 am.

Abstract. I will demonstrate that a large cardinal need not exhibit its large cardinal nature in HOD. I will begin with the example of a measurable cardinal that is not measurable in HOD. After this, I will describe how to force a more extreme divergence.  For example, among other possibilities, it is relatively consistent that there is a supercompact cardinal that is not weakly compact in HOD. This is very recent joint work with Cheng Yong.

Article

Superstrong and other large cardinals are never Laver indestructible, ASL 2014, Boulder, May 2014

The Flatirons, Boulder, ColoradoThis will be an invited talk at the ASL 2014 North American Annual Meeting (May 19-22, 2014) in the special session Set Theory in Honor of Rich Laver, organized by Bill Mitchell and Jean Larson.

Abstract.  The large cardinal indestructibility phenomenon, discovered by Richard Laver with his seminal result on supercompact cardinals, is by now often seen as pervasive in the large cardinal hierarchy. Nevertheless, a new never-indestrucible phenomenon has emerged.  Superstrong cardinals, for example, are never Laver indestructible.  Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible.  The proof involves a detailed technical analysis of the complexity of the definition in Laver’s theorem on the definability of the ground model, thereby involving and extending results in set-theoretic geology.  This is joint work between myself and Joan Bagaria, Kostas Tasprounis and Toshimichi Usuba.

Article | Slides

Superstrong and other large cardinals are never Laver indestructible

  • J. Bagaria, J. D. Hamkins, K. Tsaprounis, and T. Usuba, “Superstrong and other large cardinals are never Laver indestructible,” to appear in Archive for Mathematical Logic (special issue in honor of Richard Laver).  
    @ARTICLE{BagariaHamkinsTsaprounisUsuba:SuperstrongAndOtherLargeCardinalsAreNeverLaverIndestructible,
    author = {Joan Bagaria and Joel David Hamkins and Konstantinos Tsaprounis and Toshimichi Usuba},
    title = {Superstrong and other large cardinals are never {Laver} indestructible},
    journal = {to appear in Archive for Mathematical Logic (special issue in honor of Richard Laver)},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {},
    abstract = {},
    keywords = {},
    eprint = {1307.3486},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/superstrong-never-indestructible/},
    comment = {http://jdh.hamkins.org/superstrong-never-indestructible/},
    source = {},
    }

Abstract.  Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, $1$-extendible cardinals, $0$-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger.

The large cardinal indestructibility phenomenon, occurring when certain preparatory forcing makes a given large cardinal become necessarily preserved by any subsequent forcing from a large class of forcing notions, is pervasive in the large cardinal hierarchy. The phenomenon arose in Laver’s seminal result that any supercompact cardinal $\kappa$ can be made indestructible by ${\lt}\kappa$-directed closed forcing. It continued with the Gitik-Shelah treatment of strong cardinals; the universal indestructibility of Apter and myself, which produced simultaneous indestructibility for all weakly compact, measurable, strongly compact, supercompact cardinals and others; the lottery preparation, which applies generally to diverse large cardinals; work of Apter, Gitik and Sargsyan on indestructibility and the large-cardinal identity crises; the indestructibility of strongly unfoldable cardinals; the indestructibility of Vopenka’s principle; and diverse other treatments of large cardinal indestructibility. Based on these results, one might be tempted to the general conclusion that all the usual large cardinals can be made indestructible.

In this article, my co-authors and I temper that temptation by proving that certain kinds of large cardinals cannot be made nontrivially indestructible. Superstrong cardinals, we prove, are never Laver indestructible. Consequently, neither are almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals and $1$-extendible cardinals, to name a few. Even the $0$-extendible cardinals are never indestructible, and neither are weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, strongly uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals, when $n\geq 3$. In fact, all these large cardinal properties are superdestructible, in the sense that if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger. Many quite ordinary forcing notions, which one might otherwise have expected to fall under the scope of an indestructibility result, will definitely ruin all these large cardinal properties. For example, adding a Cohen subset to any cardinal $\kappa$ will definitely prevent it from being superstrong—as well as preventing it from being uplifting, $\Sigma_3$-correct, $\Sigma_3$-extendible and so on with all the large cardinal properties mentioned above—in the forcing extension.

Main Theorem. 

  1. Superstrong cardinals are never Laver indestructible.
  2. Consequently, almost huge, huge, superhuge and rank-into-rank cardinals are never Laver indestructible.
  3. Similarly, extendible cardinals, $1$-extendible and even $0$-extendible cardinals are never Laver indestructible.
  4. Uplifting cardinals, pseudo-uplifting cardinals, weakly superstrong cardinals, superstrongly unfoldable cardinals and strongly uplifting cardinals are never Laver indestructible.
  5. $\Sigma_n$-reflecting and indeed $\Sigma_n$-correct cardinals, for each finite $n\geq 3$, are never Laver indestructible.
  6. Indeed—the strongest result here, because it is the weakest notion—$\Sigma_3$-extendible cardinals are never Laver indestructible.

In fact, each of these large cardinal properties is superdestructible. Namely, if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the mentioned large cardinal properties with target $\theta$ or larger.

The proof makes use of a detailed analysis of the complexity of the definition of the ground model in the forcing extension.  These results are, to my knowledge, the first applications of the ideas of set-theoretic geology not making direct references to set-theoretically geological concerns.

Theorem 10 in the article answers (the main case of) a question I had posed on MathOverflow, namely, Can a model of set theory be realized as a Cohen-subset forcing extension in two different ways, with different grounds and different cardinals?  I had been specifically interested there to know whether a cardinal $\kappa$ necessarily becomes definable after adding a Cohen subset to it, and theorem 10 shows indeed that it does:  after adding a Cohen subset to a cardinal, it becomes $\Sigma_3$-definable in the extension, and this fact can be seen as explaining the main theorem above.

Related MO question | CUNY talk

Superstrong cardinals are never Laver indestructible, and neither are extendible, almost huge and rank-into-rank cardinals, CUNY, January 2013

This is a talk for the CUNY Set Theory Seminar on February 1, 2013, 10:00 am.

Abstract.  Although the large cardinal indestructibility phenomenon, initiated with Laver’s seminal 1978 result that any supercompact cardinal $\kappa$ can be made indestructible by $\lt\kappa$-directed closed forcing and continued with the Gitik-Shelah treatment of strong cardinals, is by now nearly pervasive in set theory, nevertheless I shall show that no superstrong strong cardinal—and hence also no $1$-extendible cardinal, no almost huge cardinal and no rank-into-rank cardinal—can be made indestructible, even by comparatively mild forcing: all such cardinals $\kappa$ are destroyed by $\text{Add}(\kappa,1)$, by $\text{Add}(\kappa,\kappa^+)$, by $\text{Add}(\kappa^+,1)$ and by many other commonly considered forcing notions.

This is very recent joint work with Konstantinos Tsaprounis and Joan Bagaria.

nylogic.org | Set Theory Seminar |

Jason Schanker

Jason Aaron Schanker earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2011.  Jason’s dissertation introduces several interesting new large cardinal notions, investigating their interaction with forcing, indestructibility, the Generalized Continuum Hypothesis and other topics.  He defines that a cardinal $\kappa$ is weakly measurable, for example, if any family of $\kappa^+$ many subsets of $\kappa$ can be measured by a $\kappa$-complete filter.  This is equivalent to measurability under the GCH, of course, but the notions are not equivalent in general, although they are equiconsistent.  The weak measurability concept can be viewed as a generalization of weak compactness, and there are myriad equivalent formulations, including elementary embedding characterizations using transitive domains of size $\kappa^+$.  It was known classically that the failure of the GCH at a measurable cardinal has consistency strength strictly greater than a measurable cardinal, but Jason proved that the corresponding fact is not true for the weakly measurable cardinals.  Generalizing this notion, Jason introduced the near supercompactness hierarchy, which refines and extends the usual supercompactness hierarchy in a way that adapts well to many existing forcing arguments.  Jason holds a faculty position at Manhattanville College in Purchase, New York.

Jason Schanker

web page | math genealogy | MathSciNet | google scholar | I-phone apps | related posts

Jason Schanker, “Weakly Measurable Cardinals and Partial Near Supercompactness,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June, 2011.

Abstract.  I will introduce a few new large cardinal concepts. A weakly measurable cardinal is a new large cardinal concept obtained by weakening the familiar concept of a measurable cardinal. Specifically, a cardinal $\kappa$ is weakly measurable if for every collection $A$ containing at most $\kappa^+$ many subsets of $\kappa$, there exists a nonprincipal $\kappa$-complete filter on $\kappa$ measuring all sets in $A$. Every measurable cardinal is weakly measurable, but a weakly measurable cardinal need not be measurable. Moreover, while the GCH cannot fail first at a measurable cardinal, I will show that it can fail first at a weakly measurable cardinal. More generally, if $\kappa$ is measurable, then we can make its weak measurability indestructible by the forcing $\text{Add}(\kappa,\eta)$ for all $\eta$ while forcing the GCH to hold below $\kappa$. Nevertheless, I shall prove that weakly measurable v cardinals and measurable cardinals are equiconsistent.

A cardinal κ is nearly $\theta$-supercompact if for every $A\subset\theta$, there exists a transitive $M\models\text{ZFC}^-$ closed under ${<}\kappa$ sequences with $A,\kappa,\theta\in M$, a transitive $N$, and an elementary embedding $j : M \to  N$ with critical point $\kappa$ such that $j(\kappa) > \theta$ and $j”\theta\in N$. This concept strictly refines the $\theta$-supercompactness hierarchy as every $\theta$-supercompact cardinal is nearly $\theta$-supercompact, and every nearly $2^{\theta^{{<}\kappa}}$-supercompact cardinal $\kappa$ is $\theta$-supercompact. Moreover, if $\kappa$ is a $\theta$-supercompact cardinal for some $\theta$ such that $\theta^{{<}\kappa}=\theta$, we can move to a forcing extension preserving all cardinals below $\theta^{++}$ where $\kappa$ remains $\theta$-supercompact but is not nearly $\theta^+$-supercompact. I will also show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq 2^\kappa$ such that $\theta^{{<}\theta}=\theta$, then there exists a forcing extension preserving all cardinals at or above $\kappa$ where $\kappa$ is nearly $\theta$-supercompact but not measurable. These types of large cardinals also come equipped with a nontrivial indestructibility result, and I will prove that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa$ such that $\theta^{{<}\theta}=\theta$, then there is a forcing extension where its near $\theta$-supercompactness is preserved and indestructible by any further ${<}\kappa$-directed closed $\theta$-c.c. forcing of size at most $\theta$. Finally, these cardinals have high consistency strength. Specifically, I will show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa^+$ for which $\theta^{{<}\theta}=\theta$, then AD holds in $L(\mathbb{R})$. In particular, if $\kappa$ is nearly $\kappa^+$-supercompact and $2^\kappa=\kappa^+$, then AD holds in $L(\mathbb{R})$.

Thomas Johnstone

Thomas Johnstone earned his Ph.D. under my supervision in June, 2007 at the CUNY Graduate Center.  Tom likes to get thoroughly to the bottom of a problem, and this indeed is what he did in his dissertation work on the forcing-theoretic aspects of unfoldable cardinals.  He seemed to want always to dig deeper, seeking out the unstated general phenomenon behind the results.  His characteristic style of giving a seminar talk—pure mathematical pleasure to attend—is to explain not only why the mathematical fact is true, but also why the proof must be the way that it is.  Thomas holds a tenure-track position at the New York City College of Technology of CUNY.

Thomas A. Johnstone

web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts
 

Thomas A. Johnstone, “Strongly unfoldable cardinals made indestructible,” Ph.D. dissertation, The Graduate Center of the City University of New York, June 2007.

Abstract. I provide indestructibility results for weakly compact, indescribable and strongly unfoldable cardinals. In order to make these large cardinals indestructible, I assume the existence of a strongly unfoldable cardinal $\kappa$, which is a hypothesis consistent with $V=L$. The main result shows that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all ${<}\kappa$-closed forcing which does not collapse $\kappa^{+}$. As strongly unfoldable cardinals strengthen both indescribable and weakly compact cardinals, I obtain indestructibility for these cardinals also, thereby reducing the large cardinal hypothesis of previously known indestructibility results for these cardinals significantly. Finally, I use the developed methods to show the consistency of a weakening of the Proper Forcing Axiom $\rm PFA$ relative to the existence of a strongly unfoldable cardinal.

Indestructible strong unfoldability

  • J. D. Hamkins and T. A. Johnstone, “Indestructible strong unfoldability,” Notre Dame J.~Form.~Log., vol. 51, iss. 3, pp. 291-321, 2010.  
    @ARTICLE{HamkinsJohnstone2010:IndestructibleStrongUnfoldability,
    AUTHOR = {Hamkins, Joel David and Johnstone, Thomas A.},
    TITLE = {Indestructible strong unfoldability},
    JOURNAL = {Notre Dame J.~Form.~Log.},
    FJOURNAL = {Notre Dame Journal of Formal Logic},
    VOLUME = {51},
    YEAR = {2010},
    NUMBER = {3},
    PAGES = {291--321},
    ISSN = {0029-4527},
    MRCLASS = {03E55 (03E40)},
    MRNUMBER = {2675684 (2011i:03050)},
    MRREVIEWER = {Bernhard A.~K{\"o}nig},
    DOI = {10.1215/00294527-2010-018},
    URL = {http://dx.doi.org/10.1215/00294527-2010-018},
    file = F
    }

Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all ${\lt}\kappa$-closed + $\kappa^+$-preserving forcing. This degree of indestructibility, we prove, is the best possible from this hypothesis within the class of ${\lt}\kappa$-closed forcing. From a stronger hypothesis, however, we prove that the strong unfoldability of $\kappa$ can be made indestructible by all ${\lt}\kappa$-closed forcing. Such indestructibility, we prove, does not follow from indestructibility merely by ${\lt}\kappa$-directed closed forcing. Finally, we obtain global and universal forms of indestructibility for strong unfoldability, finding the exact consistency strength of universal indestructibility for strong unfoldability.

Tall cardinals

  • J. D. Hamkins, “Tall cardinals,” MLQ Math.~Log.~Q., vol. 55, iss. 1, pp. 68-86, 2009.  
    @ARTICLE{Hamkins2009:TallCardinals,
    AUTHOR = {Hamkins, Joel D.},
    TITLE = {Tall cardinals},
    JOURNAL = {MLQ Math.~Log.~Q.},
    FJOURNAL = {MLQ.~Mathematical Logic Quarterly},
    VOLUME = {55},
    YEAR = {2009},
    NUMBER = {1},
    PAGES = {68--86},
    ISSN = {0942-5616},
    MRCLASS = {03E55 (03E35)},
    MRNUMBER = {2489293 (2010g:03083)},
    MRREVIEWER = {Carlos A.~Di Prisco},
    DOI = {10.1002/malq.200710084},
    URL = {http://dx.doi.org/10.1002/malq.200710084},
    file = F
    }

A cardinal $\kappa$ is tall if for every ordinal $\theta$ there is an embedding $j:V\to M$ with critical point $\kappa$ such that $j(\kappa)\gt\theta$ and $M^\kappa\subset M$.  Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal $\kappa$ can be made indestructible by a variety of forcing notions, including forcing that pumps up the value of $2^\kappa$ as high as desired.

Indestructibility and the level-by-level agreement between strong compactness and supercompactness

  • J. D. Apter Arthur W.~and Hamkins, “Indestructibility and the level-by-level agreement between strong compactness and supercompactness,” J.~Symbolic Logic, vol. 67, iss. 2, pp. 820-840, 2002.  
    @ARTICLE{ApterHamkins2002:LevelByLevel,
    AUTHOR = {Apter, Arthur W.~and Hamkins, Joel David},
    TITLE = {Indestructibility and the level-by-level agreement between strong compactness and supercompactness},
    JOURNAL = {J.~Symbolic Logic},
    FJOURNAL = {The Journal of Symbolic Logic},
    VOLUME = {67},
    YEAR = {2002},
    NUMBER = {2},
    PAGES = {820--840},
    ISSN = {0022-4812},
    CODEN = {JSYLA6},
    MRCLASS = {03E35 (03E55)},
    MRNUMBER = {1905168 (2003e:03095)},
    MRREVIEWER = {Carlos A.~Di Prisco},
    DOI = {10.2178/jsl/1190150111},
    URL = {http://dx.doi.org/10.2178/jsl/1190150111},
    eprint = {math/0102086},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Can a supercompact cardinal $\kappa$ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above $\kappa$, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.

Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata

  • J. D. Apter Arthur W.~and Hamkins, “Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata,” MLQ Math.~Log.~Q., vol. 47, iss. 4, pp. 563-571, 2001.  
    @ARTICLE{ApterHamkins2001:IndestructibleWC,
    AUTHOR = {Apter, Arthur W.~and Hamkins, Joel David},
    TITLE = {Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata},
    JOURNAL = {MLQ Math.~Log.~Q.},
    FJOURNAL = {MLQ.~Mathematical Logic Quarterly},
    VOLUME = {47},
    YEAR = {2001},
    NUMBER = {4},
    PAGES = {563--571},
    ISSN = {0942-5616},
    MRCLASS = {03E35 (03E55)},
    MRNUMBER = {1865776 (2003h:03078)},
    DOI = {10.1002/1521-3870(200111)47:4%3C563::AID-MALQ563%3E3.0.CO;2-%23},
    URL = {http://dx.doi.org/10.1002/1521-3870(200111)47:4<563::AID-MALQ563>3.0.CO;2-#},
    eprint = {math/9907046},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

We show that if the weak compactness of a cardinal is made indestructible by means of any preparatory forcing of a certain general type, including any forcing naively resembling the Laver preparation, then the cardinal was originally supercompact. We then apply this theorem to show that the hypothesis of supercompactness is necessary for certain proof schemata.

Unfoldable cardinals and the GCH

  • J. D. Hamkins, “Unfoldable cardinals and the GCH,” J.~Symbolic Logic, vol. 66, iss. 3, pp. 1186-1198, 2001.  
    @article{Hamkins2001:UnfoldableCardinals,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {Unfoldable cardinals and the {GCH}},
    JOURNAL = {J.~Symbolic Logic},
    FJOURNAL = {The Journal of Symbolic Logic},
    VOLUME = {66},
    YEAR = {2001},
    NUMBER = {3},
    PAGES = {1186--1198},
    ISSN = {0022-4812},
    CODEN = {JSYLA6},
    MRCLASS = {03E55 (03E35 03E40)},
    MRNUMBER = {1856735 (2002i:03059)},
    MRREVIEWER = {Eva Coplakova},
    DOI = {10.2307/2695100},
    URL = {http://dx.doi.org/10.2307/2695100},
    eprint = {math/9909029},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Introducing unfoldable cardinals last year, Andres Villaveces ingeniously extended the notion of weak compactness to a larger context, thereby producing a large cardinal notion, unfoldability, with some of the feel and flavor of weak compactness but with a greater consistency strength. Specifically, $\kappa$ is $\theta$-unfoldable when for any transitive structure $M$ of size $\kappa$ that contains $\kappa$ as an element, there is an elementary embedding $j:M\to N$ with critical point $\kappa$ for which $j(\kappa)$ is at least $\theta$. Define that $\kappa$ is fully unfoldable, then, when it is $\theta$-unfoldable for every $\theta$. In this paper I show that the embeddings associated with these unfoldable cardinals are amenable to some of the same lifting techniques that apply to weakly compact embeddings, augmented with methods from the strong cardinal context. Using these techniques, I show by set-forcing over any model of ZFC that any given unfoldable cardinal $\kappa$ can be made indestructible by the forcing to add any number of Cohen subsets to $\kappa$. This result contradicts expectations to the contrary that class forcing would be required.

The lottery preparation

  • J. D. Hamkins, “The lottery preparation,” Ann.~Pure Appl.~Logic, vol. 101, iss. 2-3, pp. 103-146, 2000.  
    @article {Hamkins2000:LotteryPreparation,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {The lottery preparation},
    JOURNAL = {Ann.~Pure Appl.~Logic},
    FJOURNAL = {Annals of Pure and Applied Logic},
    VOLUME = {101},
    YEAR = {2000},
    NUMBER = {2-3},
    PAGES = {103--146},
    ISSN = {0168-0072},
    CODEN = {APALD7},
    MRCLASS = {03E55 (03E40)},
    MRNUMBER = {1736060 (2001i:03108)},
    MRREVIEWER = {Klaas Pieter Hart},
    DOI = {10.1016/S0168-0072(99)00010-X},
    URL = {http://dx.doi.org/10.1016/S0168-0072(99)00010-X},
    eprint = {math/9808012},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal $\kappa$, for example, becomes fully indestructible by $\kappa$-directed closed forcing; a strong cardinal $\kappa$ becomes indestructible by less-than-or-equal-$\kappa$-strategically closed forcing; and a strongly compact cardinal $\kappa$ becomes indestructible by, among others, the forcing to add a Cohen subset to $\kappa$, the forcing to shoot a club $C$ in $\kappa$ which avoids the measurable cardinals and the forcing to add various long Prikry sequences. The lottery preparation works best when performed after fast function forcing, which adds a new completely general kind of Laver function for any large cardinal, thereby freeing the Laver function concept from the supercompact cardinal context.