What is the theory ZFC without power set?

  • V. Gitman, J. D. Hamkins, and T. A. Johnstone, “What is the theory ZFC without Powerset?.” (under review)  
    @ARTICLE{GitmanHamkinsJohnstone:WhatIsTheTheoryZFC-Powerset?,
    AUTHOR = {Victoria Gitman and Joel David Hamkins and Thomas A. Johnstone},
    TITLE = {What is the theory {ZFC} without {Powerset}?},
    JOURNAL = {},
    YEAR = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {under review},
    abstract = {},
    keywords = {},
    eprint = {1110.2430},
    url = {http://arxiv.org/abs/1110.2430},
    source = {},
    }

This is joint work with Victoria Gitman and Thomas Johnstone.

We show that the theory ZFC-, consisting of the usual axioms of ZFC but with the power set axiom removed-specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered-is weaker than commonly supposed and is inadequate to establish several basic facts often desired in its context. For example, there are models of ZFC- in which $\omega_1$ is singular, in which every set of reals is countable, yet $\omega_1$ exists, in which there are sets of reals of every size $\aleph_n$, but none of size $\aleph_\omega$, and therefore, in which the collection axiom sceme fails; there are models of ZFC- for which the Los theorem fails, even when the ultrapower is well-founded and the measure exists inside the model; there are models of ZFC- for which the Gaifman theorem fails, in that there is an embedding $j:M\to N$ of ZFC- models that is $\Sigma_1$-elementary and cofinal, but not elementary; there are elementary embeddings $j:M\to N$ of ZFC- models whose cofinal restriction $j:M\to \bigcup j“M$ is not elementary. Moreover, the collection of formulas that are provably equivalent in ZFC- to a $\Sigma_1$-formula or a $\Pi_1$-formula is not closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory $\text{ZFC}^-$, obtained by using collection rather than replacement in the axiomatization above. These results extend prior work of Zarach.

See Victoria Gitman’s summary post on┬áthe article

One thought on “What is the theory ZFC without power set?

  1. Pingback: What is the theory of ZFC-Powerset? Toronto 2011 | Joel David Hamkins

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>