Math for six-year-olds

Today I went into my daughter’s first-grade classroom, full of six-year-old girls, and gave a presentation about Möbius bands.

Make your own Mobius bandWe cut strips of paper and at first curled them into simple bands, cylinders, which we proved had two sides by coloring them one color on the outside and another color on the inside.  Next, we cut strips and curled them around, but added a twist, to make a true Möbius band.

A Möbius band

A Möbius band

These, of course, have only one side, a fact that the children proved by coloring it one color all the way around. And we observed that a Möbius band has only one edge.

A Möbius-like band, with two twists

A Möbius-like band, with two twists

We explored what happens with two twists, or more twists, and also what happens when you cut a Möbius band down the center, all the way around.

Möbius band cut down the center

Möbius band cut down the center

It is very interesting to cut a Möbius band on a line that is one-third of the way in from an edge, all the way around. What happens? Make your prediction before unraveling the pieces–how many pieces will there be? Will they be all the same size? How many twists will they have?

Overall, the whole presentation was a lot of fun. The girls were extremely curious about everything, and experimented with additional twists and additional ways of cutting.  It seemed to be just the right amount of mathematical thinking, cutting and coloring for a first-grade class.  To be sure, without prompting the girls made various Möbius earrings, headbands and bracelets, which I had to admit were fairly cool. One girl asked, “is this really mathematics?”

It seems I may be back in the first-grade classroom this spring, and I have in mind to teach them all how to beat their parents at Nim.

Superstrong cardinals are never Laver indestructible, and neither are extendible, almost huge and rank-into-rank cardinals, CUNY, January 2013

This is a talk for the CUNY Set Theory Seminar on February 1, 2013, 10:00 am.

Abstract.  Although the large cardinal indestructibility phenomenon, initiated with Laver’s seminal 1978 result that any supercompact cardinal $\kappa$ can be made indestructible by $\lt\kappa$-directed closed forcing and continued with the Gitik-Shelah treatment of strong cardinals, is by now nearly pervasive in set theory, nevertheless I shall show that no superstrong strong cardinal—and hence also no $1$-extendible cardinal, no almost huge cardinal and no rank-into-rank cardinal—can be made indestructible, even by comparatively mild forcing: all such cardinals $\kappa$ are destroyed by $\text{Add}(\kappa,1)$, by $\text{Add}(\kappa,\kappa^+)$, by $\text{Add}(\kappa^+,1)$ and by many other commonly considered forcing notions.

This is very recent joint work with Konstantinos Tsaprounis and Joan Bagaria.

nylogic.org | Set Theory Seminar |

The use and value of mathoverflow

François Dorais has created a discussion on the MathOverflow discussion site, How is mathoverflow useful for me? in which he is soliciting response from MO users.  Here is what I wrote there:

The principal draw of mathoverflow for me is the unending supply of extremely interesting mathematics, an eternal fountain of fascinating questions and answers. The mathematics here is simply compelling.

I feel that mathoverflow has enlarged me as a mathematician. I have learned a huge amount here in the past few years, particularly concerning how my subject relates to other parts of mathematics. I’ve read some really great answers that opened up new perspectives for me. But just as importantly, I’ve learned a lot when coming up with my own answers. It often happens that someone asks a question in another part of mathematics that I can see at bottom has to do with how something I know about relates to their area, and so in order to answer, I must learn enough about this other subject in order to see the connection through. How fulfilling it is when a question that is originally opaque to me, because I hadn’t known enough about this other topic, becomes clear enough for me to have an answer. Meanwhile, mathoverflow has also helped me to solidify my knowledge of my own research area, often through the exercise of writing up a clear summary account of a familiar mathematical issue or by thinking about issues arising in a question concerning confusing or difficult aspects of a familiar tool or method.

Mathoverflow has also taught me a lot about good mathematical exposition, both by the example of other’s high quality writing and by the immediate feedback we all get on our posts. This feedback reveals what kind of mathematical explanation is valued by the general mathematical community, in a direct way that one does not usually get so well when writing a paper or giving a conference talk. This kind of knowledge has helped me to improve my mathematical writing in general.

So, thanks very much mathoverflow! I am grateful.

 

The differential operator $\frac{d}{dx}$ binds variables

Recently the question If $\frac{d}{dx}$ is an operator, on what does it operate? was asked on mathoverflow.  It seems that some users there objected to the question, apparently interpreting it as an elementary inquiry about what kind of thing is a differential operator, and on this interpretation, I would agree that the question would not be right for mathoverflow. And so the question was closed down (and then reopened, and then closed again….sigh). (Update 12/6/12: it was opened again,and so I’ve now posted my answer over there.)

Meanwhile, I find the question to be more interesting than that, and I believe that the OP intends the question in the way I am interpreting it, namely, as a logic question, a question about the nature of mathematical reference, about the connection between our mathematical symbols and the abstract mathematical objects to which we take them to refer.  And specifically, about the curious form of variable binding that expressions involving $dx$ seem to involve.  So let me write here the answer that I had intended to post on mathoverflow:

————————-

To my way of thinking, this is a serious question, and I am not really satisfied by the other answers and comments, which seem to answer a different question than the one that I find interesting here.

The problem is this. We want to regard $\frac{d}{dx}$ as an operator in the abstract senses mentioned by several of the other comments and answers. In the most elementary situation, it operates on a functions of a single real variable, returning another such function, the derivative. And the same for $\frac{d}{dt}$.

The problem is that, described this way, the operators $\frac{d}{dx}$ and $\frac{d}{dt}$ seem to be the same operator, namely, the operator that takes a function to its derivative, but nevertheless we cannot seem freely to substitute these symbols for
one another in formal expressions. For example, if an instructor were to write $\frac{d}{dt}x^3=3x^2$, a student might object, “don’t you mean $\frac{d}{dx}$?” and the instructor would likely reply, “Oh, yes, excuse me, I meant $\frac{d}{dx}x^3=3x^2$. The other expression would have a different meaning.”

But if they are the same operator, why don’t the two expressions have the same meaning? Why can’t we freely substitute different names for this operator and get the same result? What is going on with the logic of reference here?

The situation is that the operator $\frac{d}{dx}$ seems to make sense only when applied to functions whose independent variable is described by the symbol “x”. But this collides with the idea that what the function is at bottom has nothing to do with the way we represent it, with the particular symbols that we might use to express which function is meant.  That is, the function is the abstract object (whether interpreted in set theory or category theory or whatever foundational theory), and is not connected in any intimate way with the symbol “$x$”.  Surely the functions $x\mapsto x^3$ and $t\mapsto t^3$, with the same domain and codomain, are simply different ways of  describing exactly the same function. So why can’t we seem to substitute them for one another in the formal expressions?

The answer is that the syntactic use of $\frac{d}{dx}$ in a formal expression involves a kind of binding of the variable $x$.

Consider the issue of collision of bound variables in first order logic: if $\varphi(x)$ is  the assertion that $x$ is not maximal with respect to $\lt$, expressed by $\exists y\ x\lt y$, then $\varphi(y)$, the assertion that $y$ is not maximal, is not correctly described as the assertion $\exists y\ y\lt y$, which is what would be obtained by simply replacing the occurrence of $x$ in $\varphi(x)$ with the symbol $y$. For the intended meaning, we cannot simply syntactically replace the occurrence of $x$ with the symbol $y$, if that occurrence of $x$ falls under the scope of a quantifier.

Similarly, although the functions $x\mapsto x^3$ and $t\mapsto t^3$ are equal as functions of a real variable, we cannot simply syntactically substitute the expression $x^3$ for $t^3$ in $\frac{d}{dt}t^3$ to get $\frac{d}{dt}x^3$. One might even take the latter as a kind of ill-formed expression, without further explanation of how $x^3$ is to be taken as a function of $t$.

So the expression $\frac{d}{dx}$ causes a binding of the variable $x$, much like a quantifier might, and this prevents free substitution in just the way that collision does. But the case here is not quite the same as the way $x$ is a bound variable in $\int_0^1 x^3\ dx$, since $x$ remains free in $\frac{d}{dx}x^3$, but we would say that $\int_0^1 x^3\ dx$ has the same meaning as $\int_0^1 y^3\ dy$.

Of course, the issue evaporates if one uses a notation, such as the $\lambda$-calculus, which insists that one be completely explicit about which syntactic variables are to be regarded as the independent variables of a functional term, as in $\lambda x.x^3$, which means the function of the variable $x$ with value $x^3$.  And this is how I take several of the other answers to the question, namely, that the use of the operator $\frac{d}{dx}$ indicates that one has previously indicated which of the arguments of the given function is to be regarded as $x$, and it is with respect to this argument that one is differentiating.  In practice, this is almost always clear without much remark.  For example, our use of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ seems to manage very well in complex situations, sometimes with dozens of variables running around, without adopting the onerous formalism of the $\lambda$-calculus, even if that formalism is what these solutions are essentially really about.

Meanwhile, it is easy to make examples where one must be very specific about which variables are the independent variable and which are not, as Todd mentions in his comment to David’s answer. For example, cases like

$$\frac{d}{dx}\int_0^x(t^2+x^3)dt\qquad
\frac{d}{dt}\int_t^x(t^2+x^3)dt$$

are surely clarified for students by a discussion of the usage of variables in formal expressions and more specifically the issue of bound and free variables.

Student talks on infinitary computability

Students in my Infinitary Computability course will give talks on their term papers.  Talks will be held at the CUNY Graduate Center, Room 3307, 9:30-11:30.

Monday, December 3rd

  • Miha Habič will speak on “Cardinal-Recognizing Infinite Time Turing Machines”, in which he develops the theory of infinite time Turing machines that are given information about when they have reached cardinal time.
  • Erin Carmody will speak on “Non-deterministic infinite time Turing machines”, in which she develops the theory of non-deterministic ITTM computation.
  • Alexy Nikolaev will speak on “Equivalence of ITTMs, and their simultation on a finite time computer,” in which we proves the equivalence of various formalizations of ITTMs.

Monday, December 10th

  • Manuel Alves will speak on infinite time computable model theory.
  • Syed Ali Ahmed will speak on the relation between Büchi automata and infinite time Turing machines, including $\omega$-regular languages and generalizations to longer transfinite strings.

Pluralism in set theory: does every mathematical statement have a definite truth value? GC Philosophy Colloquium, 2012

This will be my talk for the CUNY Graduate Center Philosophy Colloquium on November 28, 2012.

I will be speaking on topics from some of my recent articles:

I shall give a summary account of some current issues in the philosophy of set theory, specifically, the debate on pluralism and the question of the determinateness of set-theoretical and mathematical truth.  The traditional Platonist view in set theory, what I call the universe view, holds that there is an absolute background concept of set and a corresponding absolute background set-theoretic universe in which every set-theoretic assertion has a final, definitive truth value.  What I would like to do is to tease apart two often-blurred aspects of this perspective, namely, to separate the claim that the set-theoretic universe has a real mathematical existence from the claim that it is unique.  A competing view, which I call the multiverse view, accepts the former claim and rejects the latter, by holding that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe, and a corresponding pluralism of set-theoretic truths.  After framing the dispute, I shall argue that the multiverse position explains our experience with the enormous diversity of set-theoretic possibility, a phenomenon that is one of the central set-theoretic discoveries of the past fifty years and one which challenges the universe view. In particular, I shall argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Slides

The countable models of set theory are linearly pre-ordered by embeddability, Rutgers, November 2012

This will be a talk for the Rutgers Logic Seminar on November 19, 2012.

Abstract.  I will speak on my recent theorem that every countable model of set theory $M$, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding $j:M\to L^M$ that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random $\mathbb{Q}$-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that $L^M$ contains a submodel that is a universal acyclic digraph of rank $\text{Ord}^M$. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other.  Indeed, the bi-embeddability classes form a well-ordered chain of length $\omega_1+1$.  Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory $M$ is universal for all countable well-founded binary relations of rank at most $\text{Ord}^M$; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if $M$ is any nonstandard model of PA, then every countable model of set theory—in particular, every model of ZFC—is isomorphic to a submodel of the hereditarily finite sets $HF^M$ of $M$. Indeed, $HF^M$ is universal for all countable acyclic binary relations.

Article | Rutgers Logic Seminar

A multiverse perspective on the axiom of constructiblity

[bibtex key=Hamkins2014:MultiverseOnVeqL]

This article expands on an argument that I made during my talk at the Asian Initiative for Infinity: Workshop on Infinity and Truth, held July 25–29, 2011 at the Institute for Mathematical Sciences, National University of Singapore, and will be included in a proceedings volume that is being prepared for that conference.

Abstract. I argue that the commonly held $V\neq L$ via maximize position, which rejects the axiom of constructibility $V=L$ on the basis that it is restrictive, implicitly takes a stand in the pluralist debate in the philosophy of set theory by presuming an absolute background concept of ordinal. The argument appears to lose its force, in contrast, on an upwardly extensible concept of set, in light of the various facts showing that models of set theory generally have extensions to models of $V=L$ inside larger set-theoretic universes.

In section two, I provide a few new criticisms of Maddy’s proposed concept of `restrictive’ theories, pointing out that her concept of fairly interpreted in is not a transitive relation: there is a first theory that is fairly interpreted in a second, which is fairly interpreted in a third, but the first is not fairly interpreted in the third.  The same example (and one can easily construct many similar natural examples) shows that neither the maximizes over relation, nor the properly maximizes over relation, nor the strongly maximizes over relation is transitive.  In addition, the theory ZFC + “there are unboundedly many inaccessible cardinals” comes out as formally restrictive, since it is strongly maximized by the theory ZF + “there is a measurable cardinal, with no worldly cardinals above it.”

To support the main philosophical thesis of the article, I survey a series of mathemtical results,  which reveal various senses in which the axiom of constructibility $V=L$ is compatible with strength in set theory, particularly if one has in mind the possibility of moving from one universe of set theory to a much larger one.  Among them are the following, which I prove or sketch in the article:

Observation. The constructible universe $L$ and $V$ agree on the consistency of any constructible theory. They have models of the same constructible theories.

Theorem. The constructible universe $L$ and $V$ have transitive models of exactly the same constructible theories in the language of set theory.

Corollary. (Levy-Shoenfield absoluteness theorem)  In particular, $L$ and $V$ satisfy the same $\Sigma_1$ sentences, with parameters hereditarily countable in $L$. Indeed, $L_{\omega_1^L}$ and $V$ satisfy the same such sentences.

Theorem. Every countable transitive set is a countable transitive set in the well-founded part of an $\omega$-model of V=L.

Theorem. If there are arbitrarily large $\lambda<\omega_1^L$ with $L_\lambda\models\text{ZFC}$, then every countable transitive set $M$ is a countable transitive set inside a structure $M^+$  that is a pointwise-definable model of ZFC + V=L, and $M^+$ is well founded as high in the countable ordinals as desired.

Theorem. (Barwise)  Every countable model of  ZF has an end-extension to a model of ZFC + V=L.

Theorem. (Hamkins, see here)  Every countable model of set theory $\langle M,{\in^M}\rangle$, including every transitive model, is isomorphic to a submodel of its own constructible universe $\langle L^M,{\in^M}\rangle$. In other words,  there is an embedding $j:M\to L^M$, which is elementary for quantifier-free assertions.

Another way to say this is that every countable model of set theory is a submodel of a model isomorphic to $L^M$. If we lived inside $M$, then by adding new sets and elements, our universe could be transformed into a copy of the constructible universe $L^M$.

(Plus, the article contains some nice diagrams.)

Related Singapore links:

Every countable model of set theory is isomorphic to a submodel of its own constructible universe, Barcelona, December, 2012

This will be a talk for a set theory workshop at the University of Barcelona on December 15, 2012, organized by Joan Bagaria.

Vestíbul Universitat de Barcelona

Abstract. Every countable model of set theory $M$, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding $j:M\to L^M$ that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random $\mathbb{Q}$-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that $L^M$ contains a submodel that is a universal acyclic digraph of rank $\text{Ord}^M$. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other.  Indeed, the bi-embeddability classes form a well-ordered chain of length $\omega_1+1$.  Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory $M$ is universal for all countable well-founded binary relations of rank at most $\text{Ord}^M$; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if $M$ is any nonstandard model of PA, then every countable model of set theory—in particular, every model of ZFC—is isomorphic to a submodel of the hereditarily finite sets $HF^M$ of $M$. Indeed, $HF^M$ is universal for all countable acyclic binary relations.

Article | Barcelona research group in set theory

Richard Laver, 1942 – 2012

Richard Laver (October 20, 1942 — September 19, 2012).  Richard Joseph Laver, celebrated mathematician, climber, bridge player, chess master, pick-up basketball player, and friend was born in Los Angeles, California to Alma Laver Makinen and Richard Burgess Laver.  Wednesday, September 19, 2012 at 2:52 in the morning in Boulder, Colorado, Rich passed away due to complications of Parkinson’s disease.  He was surrounded by loved ones.

An informal open house gathering for friends, colleagues, and associates will be held Sunday, September 23, 2012 1pm to 5pm at Rich’s house.  A memorial will be held in the more distant future.  (Contact Sheila Miller sheila.miller@colorado.edu.)

A more detailed notice will follow.

Math Reviews of Laver’s work |  MathSciNet profile | Zentralblatt reviews

Google scholar entry | Wikipedia entry |  Math geneology

A question for the mathematics oracle

At the Workshop on Infinity and Truth in Singapore last year, we had a special session in which the speakers were asked to imagine that they had been granted an audience with an all-knowing mathematical oracle, given the opportunity to ask a single yes-or-no question, to be truthfully answered.  These questions will be gathered together and published in the conference volume.  Here is my account.

 

A question for the mathematics oracle

Joel David Hamkins, The City University of New York

 

Granted an audience with an all-knowing mathematics oracle, we may ask a single yes-or-no question, to be truthfully answered……

I might mischievously ask the question my six-year-old daughter Hypatia often puts to our visitors:  “Answer yes or no.  Will you answer `no’?” They stammer, caught in the liar paradox, as she giggles. But my actual question is:

Are we correct in thinking we have an absolute concept of the finite?

An absolute concept of the finite underlies many mathematician’s understanding of the nature of mathematical truth. Most mathematicians, for example, believe that we have an absolute concept of the finite, which determines the natural numbers as a unique mathematical structure—$0,1,2,$ and so on—in which arithmetic assertions have definitive truth values. We can prove after all that the second-order Peano axioms characterize $\langle\mathbb{N},S,0\rangle$ as the unique inductive structure, determined up to isomorphism by the fact that $0$ is not a successor, the successor function $S$ is one-to-one and every set containing $0$ and closed under $S$ is the whole of $\mathbb{N}$. And to be finite means simply to be equinumerous with a proper initial segment of this structure. Doesn’t this categoricity proof therefore settle the matter?

I don’t think so. The categoricity proof, which takes place in set theory, seems to my way of thinking merely to push the absoluteness question for finiteness off to the absoluteness question for sets instead. And surely this is a murkier realm, where already mathematicians do not universally agree that we have a single absolute background concept of set. We know by forcing and other means how to construct alternative set concepts, which seem fully as legitimate and set-theoretic as the set concepts from which they are derived. Thus, we have a plurality of set concepts, and our confidence in a unique absolute set-theoretic background is weakened. How then can we sensibly base our confidence in an absolute concept of the finite on set theory? Perhaps this absoluteness is altogether illusory.

My worries are put to rest if the oracle should answer positively. A negative answer, meanwhile, would raise alarms. A negative answer could indicate, on the one hand, that our understanding of the finite is simply incoherent, a catastrophe, where our cherished mathematical theories are all inconsistent. But, more likely in my view, a negative answer could also mean that there is an undiscovered plurality of concepts of the finite. I imagine technical developments arising that would provide us with tools to modify the arithmetic of a model of set theory, for example, with the same power and flexibility that forcing currently allows us to modify higher-order features, while not providing us with any reason to prefer one arithmetic to another (unlike our current methods with non-standard models). The discovery of such tools would be an amazing development in mathematics and lead to radical changes in our conception of mathematical truth.

Let’s have some fun—please post your question for the oracle in the comment fields below.

A question for the math oracle (pdf) | My talk at the Workshop

The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact, New York, September 14, 2012

This will be a talk for the CUNY Set Theory seminar on September 14, 2012.

Abstract.  Starting from suitable large cardinal hypothesis, I will explain how to force the least weakly compact cardinal to be unfoldable, weakly measurable and, indeed, nearly $\theta$-supercompact.  These results, proved in joint work with Jason Schanker, Moti Gitik and Brent Cody, exhibit an identity-crises phenomenon for weak compactness, similar to the phenomenon identified by Magidor for the case of strongly compact cardinals.

 

MAMLS at Rutgers, October 6-7, 2012

The Fall 2012 MAMLS Meeting will take place at Rutgers University on October 6-7, 2012. The invited speakers include Clinton Conley, Andrew Marks, Antonio Montalban, Justin Moore, Saharon Shelah, Dima Sinapova and Anush Tserunyan.

The lectures will take place in Room 216 in Scott Hall on College Avenue Campus. For those of you who are coming by train, Scott Hall is a short walk from the train station.

For further information, visit:

http://www.math.rutgers.edu/~sthomas/RU2012.html

Recent progress on the modal logic of forcing and grounds, CUNY Logic Workshop, September 2012

This will be a talk for the CUNY Logic Workshop on September 7, 2012.

Abstract. The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, with “true in all forcing extensions” and“true in some forcing extension” as the accompanying modal operators. In this modal language one may easily express sweeping general forcing principles, such asthe assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, orthe assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC.  Similarly, the dual modal logic of grounds concerns the modalities “true in all ground models” and “true in some ground model”.  In this talk, I shall survey the recent progress on the modal logic of forcing and the modal logic of grounds. This is joint work with Benedikt Loewe and George Leibman.

 

Moving up and down in the generic multiverse

[bibtex key=HamkinsLoewe2013:MovingUpAndDownInTheGenericMultiverse]

In this extended abstract we investigate the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations “is a forcing extension of”‘ and “is a ground model of”. The fragment of the first relation is the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.

The main theorems are as follows:

Theorem.  If  ZFC is consistent, then there is a model of  ZFC  whose modal logic of forcing and modal logic of grounds are both S4.2.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S4.2 and whose modal logic of grounds is S5.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S5 and whose modal logic of grounds is S4.2.

Theorem. There is no model of set theory such that both its modal logic of forcing and its modal logic of grounds are S5.

The current article is a brief extended abstract (10 pages).  A fuller account with more detailed proofs and further information will be provided in a subsequent articl

eprints:  ar$\chi$iv | NI12059-SAS | Hamburg #450